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The subjectof multiscalemodelingis

I very popular { in manydi�erent disciplines,
I kind of a mess.

Imaginewhat would happen if we did not havecomputersbefore,
and all of a sudden,we now havecomputersand we can solveall
the PDEs(and other problems)numerically.

Objectiveof this talk:
I A candidassessmentof the status of a small part of this vast

�eld.
I Putting things into perspective
I Question:What do we needto do in order to turn multiscale

modeling into a respectable�eld of science?



Two typesof multiscaleproblems:

1. Type B: Usemicroscopicmodelsto bypassad hoc constitutive
modeling.
Example:Non-Newtonian(polymer) uids { Computestress
from the detaileddynamicsof the polymers.

2. Type A: Usemicroscopicmodelsto resolvesingularities
(cracks,dislocations,contact lines,reactionzones).

Will focusmostly on Type B problems.



Early examplesof multiscale(multi-physics)methods

I Chemistry:QM-MM (Warsheland Levitt, 1975),
Car-Parrinello molecular dynamics(CPMD, 1985)

I ComplexFluids: Combinedkinetic-hydrodynamicmodels(...)
I Material Science:CPMD (1985), quasicontinuummethods

(Tadmor, Ortiz and Phillips, 1996)



A quick review(for type B problems)

Capturingthe macroscalebehavior usingmicroscopicmodels:
I Car-Parrinello molecular dynamics(CPMD, 1985)
I Local quasi-continuummethod for crystallinesolids(Tadmor,

Ortiz and Phillips (1996), Knap and Ortiz (2001))
I Kinetic schemefor gasdynamics(...)



The Car-Parrinellomolecular dynamics

I Macro behavior of interest: Dynamicsof the atoms(nuclei)
I Micro model: Electronicstructure models(e.g. density

functional theory)
I Unknown: Force �eld (don't want to useempiricalforce �eld

suchasLennard-Jones)
I \On-the-y" coupling



Seamlessformulation:
Positionsof nuclei: R1; � � � ; RN

Wavefunctions(orbitals) of electrons:� 1(�); � � � ; � M (�).
ExtendedLagrangian:
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whereEKS is the energyof the orbitals in Kohn-Shamdensity
functional theory.

How do we choosethe parameter� ?
I Physically, � � massof electronsme.
I It determinesthe fast time scale,hencestep sizein MD.

Choose� : me << � << MI .
This ideawas usedin arti�cial compressibility methods (Chorin).



The local quasicontinuummethod
I Macro behavior of interest: Elasticdeformation of crystals
I Unknown: Elasticenergyfunctional
I Micro model: Atomistic (potential energyin terms of

positionsof atoms)

1. Selectrepresentativeatomsand form �nite elementmesh

2. Averagethe potential in a small cluster to obtain at the node.



Kinetic schemesfor gasdynamics

I Macro behavior of interest: gasdynamics
I Unknown: constitutive laws
I Micro model: kinetic theory

Macro variablesU = (�; m; E) { density of conservedquantities.

1. Reconstruction:From Un, �nd consistentinitial condition for
the kinetic equation.

2. Solvekinetic equationin neighborhood of cell boundaries.

3. Perform the appropriate averagesto �nd the corresponding
uxes, and usethem to �nd Un+1 :
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Summary

Commonfeatures:

1. Capturingthe macroscalebehavior usingmicroscopic
model/simulation.

2. Making useof scaleseparation.
I Changingthe scalesof the microscopicsystem(CPMD).
I Solvingthe microscopicproblemlocally (local QC and kinetic

scheme).



Lookingfor generalstrategies

Multiscale,multi-grid method (MMG), A. Brandt (2000).

Traditional multi-grid method: �ne scalesolver.

But multiscale,multi-grid:

I Extendsthe scope of multi-grid method for the purposeof
computingonly the large scalebehavior (not resolvingall the
small scaledetails), without the needto obtain a macroscale
model �rst.

\A t su�cient coarse level, this entire algorithm e�ectively
producesmacroscopic̀ equations'for the simulatedsystem....
This can yield a macroscopicnumericaldescriptionfor the
uid evenfor thosecaseswherethe traditional derivationof
closed-form di�erential equationsis inapplicable."

I Micro model (KMC, MD, etc) usedat the �nest levelof grids.



I Linking macroand micro statesthrough \interp olation" and
\p rojection".

1. Interpolation: macroto micro
2. Projection: micro to macro

I Microscopicmodel is simulatedin subdomains, for short times.

\few sweepsare enough,due to the fast CMC equilibration.
This fast equilibration alsoimpliesthat the interpolation can
be donejust overa restrictedsubdomain, servingas window:
In the window interior �ne-level equilibration is reached."

Theseare alsothe key ideasthat motivated HMM and
\equation-free".



But: How do we realizetheseideas?

The thesisof Jingrun Chen(The ChineseAcademyof Sciences)

Alternative strategies: HMM and `Equation-free'



HMM (E, Engquist,Vanden-Eijnden,...)

1. Macroscalesolver:Assumea form of macromodel, e.g. ODE
vs SDE, and then choosea stablenumericalschemefor the
model.

2. Estimating the missingdata: Somedata neededin the
macro-solverare missingdue to the incompleteknowledgeof
the macromodel. Thesedata are estimatedfrom the
microscopicmodel.

I The microscopicmodel shouldbe constrainedso that it is
consistentwith the local macrostate of the system.

I Analytic expressionsare neededto expressthe neededdata in
terms of the microscopicsolutions.

I Special featuresof the system,suchasscaleseparation, can be
exploitedto reducethe computationalcost. Separation of
scalesallow us to solvethe microscalemodel on much smaller
domains{ this is wherecomputationalsavingscomefrom.



Example:FMM-HMM (J. Huang,...)

Evaluate

� (x) =
Z
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whereq is a smooth function, periodic in the 2nd variable with
period I .

I Direction applicationof FMM: Cost = O(" � 3).
I HMM strategy:

I Macro-solver:FMM
I Data needed:Coe�cients of multipole expansion:
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where(Ck;j ; xk;j ) = j -th (box, box-center)at kth-level.
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Example:SDEs

(
_x = f (x; y)

dy = 1
" g(x; y)dt + 1p

" � (x; y)dW(t )

Assumemacromodel in the form: _x = F(x).
Chooseforward Euleras macrosolver.
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Successesof HMM

1. A generalframework for dealingwith manydi�erent kinds of
multiscaleproblems:

I ODEsand stochasticODEs
I Stochasticsimulationalgorithms
I Homogenizationproblems
I \First-principle-based"constitutive relationsfor solidsand

uids
I etc.

2. Links togetherseveralexistingmethods
I Local quasicontinuummethods
I Kinetic schemes
I etc.

3. A nice mathematicalframework for analyzingperformaceof
multiscalemethods.

4. A natural platform for taking advantageof the special
featuresof the system(scaleseparation, self-similarity, etc.)



Di�culties with HMM

HMM is quite conservative!

Why assumethe form of the macroscalemodel to beginwith? For
practical problems,we often know somethingalreadyabout the
macroscalemodel. The form of the macroscalemodel is often the
�rst kind of questionsonewould try to answer.

What if we make a wrongassumptionabout the macroscalemodel?

Answer: HMM is an `optimal prediction' strategy: It givesthe
optimal prediction within the classof modelsthat it considers.



`Equation-free(EF)' (Kevrekidis,Gear, Hyman,...)

\Enabling microscopicsimulators to perform system-leveltasks".

A collectionof techniquesthat explicitly take into accountscale
separation:

1. Coarsebifurcation technique(extensionof the Recursive
ProjectionMethod (RPM) of Shro� and Keller)

2. Projectiveintegrators (for time)

3. Gap-tooth schemes(for space)

4. Patch dynamics(for time and space)



Example:ProjectiveIntegrators

_x = f " (x) = �
1
"

f0(x) + f1(x)

Projectiveforward Euler:

xkM + m+1 = xkM + m + � tf " (xkM + m)

m = 0; 1; 2; � � � ; M � 2,

xkM +1 = xkM + � tf " (xkM � 1)

Similar ideaproposedby Ericksson,Johnsonand Logg (SISSC,
2003), with di�erent purposes.



Samestrategyproposedfor MD and SDEs(Hummer and
Kevrekidis).
The last step shouldbe viewed as an extrapolation step:

UkM +1 � UkM

� t
=

UkM � UkM � 1

� t

whereU is (ensemble-averaged)macrovariable.



Example:Patch dynamics
I Lift: From f Un

j g, reconstructinitial data for microscopis
problem~u0 (e.g. thru interpolation).

I Evolution: Solvethe microscopicmodel with this initial data
~u0 over the small domains(the \teeth") for sometime � t :
~u� t = S� t ~u0.

I Restriction: Averagethe microscalesolution ~u� t over the
small domains,to get f ~Un

� t g.
I Extrapolation:

Un+1 = Un + � t
~Un

� t � Un

� t
(2)

or more generally:

Un+1 = Un + � t
~Un

� t � ~Un
�� t

(1 � � )� t
(3)

0 � � < 1



Applications:

Micro model:
@t u = @2

x u

Initialization: ~uj
0(x) = D0 + D1(x � xj ) + 1

2D2(x � xj )2,

D2 =
Un

j +1 � 2Un
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Comparison: Similarities

I Samepurpose: All (MMG, HMM, EF) attempt to build a
generalframework for capturing the macroscalebehavior of a
systemusingmicroscalemodels,without �rst derivingor
obtaining the macroscalemodels.

I Similar basicstrategy: Goingbackand forth betweenmacro
and micro states

I All usescaleseparation, by limiting the sizeof the domainor
the duration of the microscopicmodelsthat haveto be
simulated.

Macro to micro micro to Macro
MMG interpolation projection
HMM reconstruction compression
Equation-free lifting restriction



Di�erences

I HMM is macroscalemodel-based.It starts with an
assumptionabout the form of the macroscalemodel, and a
macroscalesolverbasedon that assumption.

I `Equation-free'doesnot rely on suchassumptions(it is much
more ambitious). It tries to capturethe macroscalebehavior
by runningmicroscalesimulationson smallwindows and short
times,

I without makingany assumptionsabout the macroscalemodel,
I without modifying directly the microscalemodel (so that it

appliesto legacycodes).
I Taking advantageof scaleseparation:

I HMM: naturally taken into accountin data-estimationstep
I Equation-free:thru interpolate in space,extrapolate in time.



Driving the legacycodes

This is a very important, practical issue:

I Commonin computationalbiologyand chemistry:
I Optimization, control and design
I Reactionpath analysis
I etc.

I Bifurcation problems:Keller.
I Optimization problems:Nelder-Mead,etc.



Successesof `equation-free'

I Identi�ed and popularizedan interestingclassof problems:
I Coarsebifurcation analysisusingmicroscopicmodels.
I Designingdriversfor legacycodes.

I \Equation-free" is an interesting,ambitiousphilosophy.
I Extendedthe RPM of Schro� and Keller to multiscale

bifurcation problems.
I Projectiveintegrators are extremelysimpleand alsoe�ective

for a classof sti� ODEs(think about BGK model).
I ......



Di�culties with `equation-free'

I Applicability of \p rojective integrators" is limited, e.g. not to
SDEsor molecular dynamics.

I Applicability of \patch dynamics"is limited, e.g. not to
convectiontype of problems.

I More importantly, the e�ective macroscalemodel may be
drasticallydi�erent on di�erent scales.

Conclusion:There are fundamentaldi�culties with the
`equation-free'philosophy.



Patch dynamicsfor convectionequation

@t u + @xu = 0

Un+1
j = Un

j + � t (� D1 +
1
2

� tD2)

Since� t << � t , the last term is much smallerthan the other
terms, and we are left essentiallywith

Un+1
j = Un

j � � tD1

What if the macroscaleequationis of the form:

Ut = Uxxxx

Then you needto do at least fourth order interpolation.



\Baby-Bathwater" Scheme(Keverkidiset al. 2003)

If the macromodel is of the form

Ut = F(U; @xU; @2
x U; � � � ; @k

x U)

Objective: Find k.

I Selectrandomnumbers � 0; � 1; � � � ; � k .
I Construct initial conditionsfor microscopicmodel that are

consistentwith the macrostate U0 suchthat @m
x U0(0) = � m.

I Usemicroscopicsimulationon a small domainto estimate
Ut (0).

I Test whetherUt (0) dependssensitivelyon � k by studyingthe
varianceof Ut (0) asa function of � k .



Di�culities

I What if we havea macroequationof the form:
Ut = Ux + Uxxxx?

I The macroscalemodel dependson the scalewe are interested
in.

I Example:Convection-di�usionin a Benard cell.
I Kesten-Papanicolaou



Challenge:How do we overcomethesedi�culties but still be
faithful its original philosophy(e.g. without becomingHMM)?

Givon,D.; Kevrekidis,I. G.; Kupferman,R. Strong Convergenceof
ProjectiveIntegrationSchemesfor Singularly Perturbed Stochastic
Di�erential Systems.Comm. Math. Sci. 4: 707{729 (2006).

Vanden-Eijnden,E. On HMM-like integrators and projective
integration methods for systemswith multiple time scales.Comm.
Math. Sci., 5: 495-505(2007).



More speci�c issues

I QM-continuummethods for electronicstructure analysisof
materials

I Molecular dynamicssimulationof solidswith generalboundary
conditions

I Incoporating the conformation of polymersinto modelingof
polymeruids

I Inuence of molecular interaction in micro-ow
I etc.



Concludingremarks:

I Multiscalemodeling is the best thing that hashappenedto
appliedmathematicsin a long time.

I We havegot to be more seriousscienti�cally.


