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Example

It is desired to train a machine to identify hand writ-

ten digits for the purpose of recognizing hand written

zip codes. The raw data, given to the machine, comes

from 16×16 = 256 pixels. Denote the corresponding

values W1, ..., W256.

In Vapnik (1998), a construction of a classifier is de-

scribed, which is a function of all ‘interactions’ up to

order 7 of W1, ..., W256.

This creates p ≈ 1016, explanatory variables, X1, ..., Xp.

They had n = 7291 examples (or data points).

They were searching for a good linear classifier, i.e.,

one that classifies to one of two candidate groups

based on the sign of

β0 +
∑

βjXj ,

for ‘appropriate’ β0, β1, ..., βp.

How to select ‘appropriate’ β0, ..., βp??
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Regularization

Consider the equation

Y = Xβ,

where Y ′ = (Y1, ..., Yn) is an n dimensional vector,

X = (Xij) is a n × p matrix, and β′ = (β1, ..., βp).

We want to solve for β.

Suppose, X is non-singular.

Then

β = (X ′X)−1X ′Y (= X−1Y ).

Note: the solution may be very ‘unstable’ if (X ′X)

is close to singular.

Unstable means: small changes in Yi could change

dramatically the solution β.
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Consider the integral equation

y(x) =

∫
1

0

K(x, t)f(t)dt,

where we want to solve for f(t).

When we consider only a grid of points, we get analo-

gous of system of linear equations as discussed above.

Solving it numerically on a grid of points, could again

produce very unstable solutions, i.e., a slight numer-

ical inaccuracy in the values of the grid points would

dramatically affect the solution when the number of

grid points is large.

3



'

&

$

%

Given a grid of points, Tikhonov suggested, rather

than finding the exact solution, to find a close solution

which is “regularized”. Regularized means satisfying

some constraints, on its smoothness or its norm, etc.

In matrix/linear-equation form, an example of a reg-

ularization method would be,

argminβ ||Y − Xβ||2 + λ(
∑

j

β2

j ), λ ≥ 0.

The right choice of λ in relation to the accuracy and

size of the grid, was studied by Tikhonov.

This particular method of regularization was also sug-

gested in statistics and called Ridge-Regression.

A method that is extensively studied in Statistics last

10 years is:

argminβ ||Y − Xβ||2 + λ
∑

j

|βj |, λ ≥ 0.

called LASSO.
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In statistics we have a similar situation.

In classical regression, we want to find β which is the

solution of

E(Y ) = Xβ.

We have ‘inaccuracy’ since we observe Y rather than

E(Y ).

We are also interested in a ‘stable’ solution.

Vapnik, suggested that some of the ideas of Tikhonov

should be relevant for statistics, and we should also

look for the right regularization methods. For exam-

ple, in high dimensional regression, do not just find

least squares, but impose regularization in order to

get ‘stable’ solutions.
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What is meant by a ‘stable’ solution, in a statistical

context?

Suggestions and Heuristics

Consider a regression problem. We want to find a

‘good’ linear predictor for Y , based on X1, ..., Xp.

‘Good’- e.g., has a low value of E(Y −
∑

βjXj)
2.

Given data, Yi and corresponding Xi1, ..., Xip, i =

1, ..., n, we write the corresponding vector and matrix

by Y D and XD.

Let

β̂ = argminβ ||Y
D−XDβ||2 + regularization−penalty.

A solution/estimator β̂ is stable if

E||Y − Xβ̂||2 ≈ ||Y D − XDβ̂||2.
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Regression/Prediction with Random Explana-

tory Variables

We have an independent random sample,

Zi = (Yi, Xi1, ..., Xip)
′, Zi ∼ F , i = 1, .., n.

We want to find β′ = (β1, ..., βp), so that
∑

βjXj is

a good predictor for the corresponding Y .

A good predictor, in the sense (e.g.)

EF (Y −

P∑
j=1

βjXj)
2

is small.

Denote α′ = (−1, β1, ..., βp) and β′ = (β1, ..., βp).

Note:

EF (Y −
P∑

j=1

βjXj)
2 = α′Σα,

where Σ = EF ZZ ′.
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Given (X1, ..., Xp), let

U = E(X1, ..., Xp)
′(X1, ..., Xp).

Hence, Ukl = EXkXl.

Let V ′ = (V1, ..., Vn), where Vj = EXjY .

If U is non-singular, then the vector β∗ which mini-

mizes

EF (Y −
P∑

j=1

βjXj)
2 = α′Σα,

is:

β∗ = U−1V.
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Note: neither U nor V are known.

A naive practice is to replace U and V by their em-

pirical version denoted Û and V̂ .

Here, Ûkl =
P

i
XikXil

n
, V̂j =

P

i
YiXij

n
.

( Û−1V̂ = (X ′X)−1X ′Y is the familiar least squares

estimator).

Note!, when n is large, by the law of large numbers,

for each k, l, Ûkl, converges to Ukl. Yet, when p

is comparable or larger than n, U and Û are not

close in a matrix norm, i.e., as operators. Similar

considerations apply for the vectors V̂ and V .

Thus, special care is required in estimation of such

high dimensional matrices and vectors.

We should apply appropriate regularization methods,

in order to obtain ‘stable solutions’ to the problem of

interest.
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A special interest and effort is in ‘sparse’ situation,

where most entries are (nearly) zero.

This is expected in data mining applications.
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Example of Estimation of a High Di-
mensional Vector of Means.

The sequence µ1, µ2, ..., µn of Binary signals is trans-

mitted. It is corrupted and the receiver ‘observe’

Y1, Y2, ...Yn, where Yi ∼ N(µi, 1) are independent.

The ‘commonsense’ method to recover the sequence

is by:

µ̂i = 1 if φ(Yi − 1) > φ(Yi), µ̂i = 0 otherwise.

This is also the m.l.e. when (µ1, ..., µn) is confined

to be a binary vector.
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Let p be the proportion of 1’s in the sequence. Then
P

Yi

n
= p̂ ≈ p.

Consider the recovery method:

µ̃i = 1 if p̂φ(Yi − 1) > (1 − p̂)φ(Yi), µ̃i = 0

otherwise.

Under 0-1 loss, as n → ∞, for p 6= 0.5 the second

method will dominate the first one.
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Under a squared error loss the same reasoning sug-

gests using the estimator:

δ̂1(Yi) =
p̂φ(Yi − 1)

p̂φ(Yi − 1) + (1 − p̂)φ(Yi)
.

Denote:

δ1(Yi) =
pφ(Yi − 1)

pφ(Yi − 1) + (1 − p)φ(Yi)
.
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