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Example

It is desired to train a machine to identify hand writ-
ten digits for the purpose of recognizing hand written
zip codes. The raw data, given to the machine, comes
from 16 x 16 = 256 pixels. Denote the corresponding
values W, ..., Wasg.

In Vapnik (1998), a construction of a classifier is de-
scribed, which is a function of all ‘interactions’ up to

order 7 of Wy, ..., Wase.

This creates p & 1019, explanatory variables, X7, ..., X,,.
They had n = 7291 examples (or data points).

They were searching for a good linear classifier, i.e.,
one that classifies to one of two candidate groups
based on the sign of

50 + Zﬂijv

for ‘appropriate’ B, 51, ..., Bp.

How to select ‘appropriate’ 5y, ..., 3,77
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Regularization
Consider the equation

Y =Xp,
where Y/ = (Y7,...,Y,) is an n dimensional vector,
X = (X;;) is an x p matrix, and 8’ = (51, ..., Bp).
We want to solve for .

Suppose, X is non-singular.

Then
B=(X'X)"'X'Y (= X7Y).

Note: the solution may be very ‘unstable’ if (X'X)
is close to singular.

Unstable means: small changes in Y; could change
dramatically the solution (.
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Consider the integral equation

y(z) = / K (x,t) £ (t)dt,

where we want to solve for f(t).

When we consider only a grid of points, we get analo-
gous of system of linear equations as discussed above.

Solving it numerically on a grid of points, could again
produce very unstable solutions, i.e., a slight numer-
ical inaccuracy in the values of the grid points would
dramatically affect the solution when the number of
grid points is large.
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/Given a grid of points, Tikhonov suggested, rather\

than finding the exact solution, to find a close solution
which is “regularized”. Regularized means satisfying
some constraints, on its smoothness or its norm, etc.

In matrix/linear-equation form, an example of a reg-
ularization method would be,

argming||Y — XBI12 + A3 82), A= 0.
J

The right choice of A in relation to the accuracy and
size of the grid, was studied by Tikhonov.

This particular method of regularization was also sug-
gested in statistics and called Ridge-Regression.

A method that is extensively studied in Statistics last
10 years is:

argming|[Y — XBI2+ 723181, A= 0.
J

\called LASSO. /
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In statistics we have a similar situation.

In classical regression, we want to find 3 which is the

solution of
E(Y)=Xpg.

We have ‘inaccuracy’ since we observe Y rather than
E(Y).

We are also interested in a ‘stable’ solution.

Vapnik, suggested that some of the ideas of Tikhonov
should be relevant for statistics, and we should also
look for the right regularization methods. For exam-
ple, in high dimensional regression, do not just find
least squares, but impose regularization in order to

get ‘stable’ solutions.
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What is meant by a ‘stable’ solution, in a statistical
context?

Suggestions and Heuristics

Consider a regression problem. We want to find a
‘good’ linear predictor for Y, based on Xy, ..., X,.

‘Good'- e.g., has a low value of E(Y — > 3, X;)%.

Given data, Y; and corresponding X;1,..., X;p,, ¢ =
1,...,n, we write the corresponding vector and matrix
by Y and X7P.

Let

3 = argming||YP?—XP8||? + regularization—penal

A solution /estimator (3 is stable if

B|lY - XA =~ ||[YP - XP3| 2.

\_ /




/Regression /Prediction with Random Explab
tory Variables

We have an independent random sample,
Zz' = (i/iaXilv ---,Xip)/7 ZZ ~ F, 1 = ]_, ey 0.

We want to find 3’ = (01, ..., 8p), so that > 3, X, is
a good predictor for the corresponding Y.

A good predictor, in the sense (e.g.)

P
Ep(Y =) 3;X;)?
j=1

Is small.

Denote o' = (—1, 34, ...,3p) and B’ = (61, ..., Bp).

Note:

P
Er(Y =) (3;X;)* = d/Sa,
j=1

\where N=FEprZ7. /
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Given (X1,...,X,), let
U=FE(X1,...,X,) (X1, ..., Xp).
Hence, Ukl — EXle.

Let V! = (V4,.., V), where V; = EX,Y.

If U is non-singular, then the vector 3* which mini-

mizes

P
Ep(Y =) B3;X;)* = o/Sa,
j=1

ﬂ* _ U—lV
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Note: neither U nor V' are known.

A naive practice is to replace U and V' by their em-
pirical version denoted U and V.

3 'Xz' Xi "~ Y;Xz
Here, Uy = 2. nk l1 ‘/j — %

(U~V = (X'X)'X'Y is the familiar least squares
estimator).

Note!, when n is large, by the law of large numbers,
for each k,I, Ukl, converges to Ux;. Yet, when p
iIs comparable or larger than n, U and U are not
close in a matrix norm, i.e., as operators. Similar

considerations apply for the vectors V and V.

Thus, special care is required in estimation of such
high dimensional matrices and vectors.

We should apply appropriate regularization methods,
in order to obtain ‘stable solutions’ to the problem of
interest.
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A special interest and effort is in ‘sparse’ situation,
where most entries are (nearly) zero.

This is expected in data mining applications.
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Example of Estimation of a High Di-
mensional Vector of Means.

The sequence (i1, t2, ..., 4, of Binary signals is trans-
mitted. It is corrupted and the receiver ‘observe’
Y1,Y5,...Y,,, where Y; ~ N(u;, 1) are independent.

The ‘commonsense’ method to recover the sequence
is by:

i =1if ¢(Y; — 1) > o(Y;), [1; = 0 otherwise.

This is also the m.l.e. when (uq, ..., tty,) is confined

to be a binary vector.
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Let p be the proportion of 1's in the sequence. Then

Y; ~
=Y =prp.

Consider the recovery method:

pp = 1if po(Y; —1) > (1 —plo(Yi), [ =0
otherwise.

Under 0-1 loss, as n — oo, for p # 0.5 the second
method will dominate the first one.
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Under a squared error loss the same reasoning sug-
gests using the estimator:

sy pp(Y; — 1)

01(Yi) = pp(Yi — 1)+ (1 —p)p(Yi)
Denote:

(V) et

" oY — 1)+ (1 - p)o(Yi)
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