Correlation Functions for Orthogonal Polynomial Random Matrix Ensembles

Ensembles of $N \times N$ Hermitian matrices

$$H = (H_{ij}) = (H_{ij}^R + i H_{ij}^I).$$

Measure

$$dH = \prod_{i} H_{ii} \prod_{i < j} dH_{ij}^{R} \prod_{i < j} dH_{ij}^{I}$$

Invariant under $H \to U^{-1} H U$ with U unitary. Consider probability measures

$$c e^{-\operatorname{tr} V(H)} dH$$
;

called "unitary ensembles", or "orthogonal polynomial ensembles" for reasons to appear.

Divide out by unitary part. Find that if eigenvalues are $\lambda_1 < \cdots \lambda_N$ then density function is

$$P(x) = c_N \prod_{i < j} (x_i - x_j)^2 \prod_i w(x_i),$$

where $w(x) = e^{-V(x)}$.

The probability density that there are eigenvalues near y_1, \dots, y_n is the n-point correlation $R_n(y_1, \dots, y_n)$ function given by

$$\frac{N!}{(N-n)!} \int \cdots \int P(y_1, \cdots, y_N) \, dy_{n+1} \cdots dy_N.$$

How to find a nice formula for these? Clue. If F is a symmetric function then

$$\mathbf{E}\left(F(\lambda_1,\cdots,\lambda_N)\right)$$

$$= \int \cdots \int P(x_1, \cdots, x_N) F(x_1, \cdots, x_N) dx_1 \cdots dx_N.$$

If $F(x_1, \dots, x_N) = \prod_{i \leq n} \delta(x_i - y_i)$, symmetrized, then $R_n = \mathbf{E}(F(\lambda_1, \dots, \lambda_N))$.

Consider F of the form

$$F(x) = \prod_{i=1}^{N} (1 + f(x_i)).$$

We'll find an integral operator K with kernel of the form

$$K(x,y) = \sum_{i=1}^{N} \varphi_i(x) \, \psi_i(y).$$

such that the expected value equals

$$\det\left(I+Kf\right),$$

where f here denotes multiplication by the function f. The determinant equals

$$\det (\delta_{ij} + (\varphi_i, \psi_j f))_{i,j=1}^N.$$

Start with

$$\mathbf{E}\left(\prod(1+f(\lambda_i))\right)$$

$$= c_N \int \cdots \int \prod_{i < j} (x_i - x_j)^2 \prod_i [w(x_i) (1 + f(x_i))] dx.$$

The right side should equal 1 when f = 0.

General identity (Andréief 1883):

$$\int \cdots \int \det u_i(x_j) \det v_i(x_j) d\nu(x_1) \cdots d\nu(x_N)$$

=
$$N! \det \left(\int u_i(x) v_j(x) d\nu(x) \right)$$
.

Taking $u_i(x) = v_i(x) = x^i$, $d\nu(x) = (1+f(x)) w(x) dx$, we see that $\mathbf{E} (\prod (1+f(\lambda_i)))$ equals

$$c'_N \det \left(\int x^{i+j} (1+f(x)) w(x) dx \right)_{i,j=0}^{N-1}$$
.

Replacing x^i by $p_i(x)$, any polyomial of degree i, amounts to row and column operations. If we set $\varphi_i(x) = p_i(x) \sqrt{w(x)}$ then above becomes

$$c_N'' \det \left(\int \varphi_i(x) \, \varphi_j(x) \, dx + \int \varphi_i(x) \, \varphi_j(x) \, f(x) \, dx \right).$$

Take the p_i to be the polynomials ON with respect to w, so the φ_i are ON with respect to Lebesgue measure. Taking f=0, get $c_N''=1$. So expected value equals

$$\det (\delta_{ij} + (\varphi_i, \varphi_j f)) = \det (I + Kf)$$

where K has kernel

$$K_N(x,y) = \sum_{i=0}^{N-1} \varphi_i(x) \,\varphi_i(y).$$

Hence "orthogonal polynomial ensembles".

If p_i arbitrary set

$$M = (m_{ij}) = \left(\int \varphi_i(x) \, \varphi_j(x) \, dx \right), \quad M^{-1} = (\mu_{ij}),$$
$$\psi_i = \sum_j \mu_{ij} \, \varphi_j.$$

Factoring out M on the left, get

$$c_N'''$$
 det $\left(\delta_{ij} + \int \psi_i(x) \varphi_j(x) f(x) dx\right)$,

where $c_N^{\prime\prime\prime}=(\det M)\,c_N^{\prime\prime}.$ Now taking f=0, get $c_N^{\prime\prime\prime}=1$ and

$$K_N(x,y) = \sum_i \varphi_i(x) \, \psi_i(y) = \sum_{i,j} \varphi_i(x) \, \mu_{ij} \, \varphi_j(y).$$

Special case $f = -\chi_J$: Probability that J contains no eigenvalues equals $\det(I - K\chi_J)$. If $J = (s, \infty)$ this is the distribution function for the largest eigenvalue.

Correlation functions. $R_n(y_1, \dots, y_n)$ equals coefficient of $z_1 \dots z_n$ in expansion of

$$\int \cdots \int P(x_1, \cdots, x_N) \prod_{i=1}^N \left[1 + \sum_{r=1}^n z_r \, \delta(x_i - y_r) \right] dx.$$

Integrals in matrix entries become sums, and above equals

$$\det (\delta_{rs} + K(y_r, y_s) z_s)_{r,s=1}^n,$$

coefficient of $z_1 \cdots z_n$ equals

$$\det (K(y_r, y_s))_{r,s=1}^n.$$

Orthogonal ensembles (real symmetric matrices). Formulas become $dH = \prod_{i < j} dH_{ij}$,

$$\mathbf{E}\left(\prod(1+f(\lambda_i))\right)$$

$$= c_N \int \cdots \int \prod_{i < j} |x_i - x_j| \prod_i [w(x_i) (1 + f(x_i))] dx.$$

Assume N even and use (de Bruijn 1955)

$$\int \cdots \int \det(u_i(x_j)) dx_1 \cdots dx_N$$
$$x_1 \leq \cdots \leq x_N$$

$$= \operatorname{Pf} \left(\int \int \operatorname{sgn}(y-x) \, u_i(x) \, u_j(y) \, dy \, dx \right)_{i,j=1}^{N}.$$

(Square of Pfaffian equals determinant.) Set $\varepsilon(x) = \frac{1}{2}\operatorname{sgn}(x)$, let p_i be arbitrary, $\varphi_i = p_i\sqrt{w}$, and find that the square of expected value equals determinant of the matrix with i,j entry

$$c_N \int \int \varepsilon(x-y) \, \varphi_i(x) \, \varphi_j(y) \, (1+f(x)) \, (1+f(y)) \, dy \, dx.$$
 Let

$$M = \left(\int \int \varepsilon(x - y) \,\varphi_i(x) \,\varphi_j(y) \,dy \,dx \right),$$
$$M^{-1} = (\mu_{ij}), \quad \psi_i = \sum_j \mu_{ij} \,\varphi_j,$$

and factor out M, so $\varphi_i(x)$ is replaced by $\psi_i(x)$. Define

$$(\varepsilon\varphi)(x) = \int \varepsilon(x-y)\,\varphi(y)\,dy.$$

What results is c_N' times the determinant of the matrix with i,j entry δ_{ij} plus

$$\int f \left[\psi_i \, \varepsilon \varphi_j - \varepsilon \psi_i \, \varphi_j - \varepsilon (f \psi_i) \, \varphi_j \right] \, dx.$$

Take f=0, get $c_N^\prime=1$. Integrand equals f times the matrix product

$$(-arepsilon\psi_i-arepsilon(f\psi_i) \qquad \psi_i) \quad \left(egin{array}{c} arphi_j \ arepsilonarphi_j \end{array}
ight).$$

Determinant equals determinant of I plus operator with matrix kernel. (What is behind this is general identity $\det(I+AB) = \det(I+BA)$.) After some manipulation get that square of expected value equals $\det(I-K_N f)$ where (Dyson notation)

$$K_N(x,y) = \begin{pmatrix} S_N(x,y) & S_N D(x,y) \\ & & \\ IS_N(x,y) - \varepsilon(x-y) & S_N(y,x) \end{pmatrix},$$

where

$$S_N(x,y) = -\sum_{i,j} \varphi_i(x) \,\mu_{ij} \,\varepsilon \varphi_j(y),$$

$$IS_N(x,y) = -\sum_{i,j} \varepsilon \varphi_i(x) \,\mu_{ij} \,\varepsilon \varphi_k(y),$$

$$S_N D(x, y) = \sum_{i,j} \varphi_i(x) \mu_{ij} \varphi_j(y).$$

Therefore $R_n(y_1, \dots, y_n)$ equals the coefficient of $z_1 \dots z_n$ in the expansion of

$$\sqrt{\det\left(\delta_{r,s}+K_N(y_r,y_s)z_s\right)}.$$

To evaluate, use keneral fact $det(I + K) = exp\{tr log(I + K)\}.$

$$R_2(y_1, y_2) = \operatorname{tr} K_N(y_1, y_1) \cdot \operatorname{tr} K_N(y_2, y_2)$$
$$-\frac{1}{2} \operatorname{tr} (K_N(y_1, y_2) K_N(y_2, y_1)).$$

Dyson showed that the correlation function can be interpreted as quaternion determinant.

Want M^{-1} to be as simple as possible. Choose p_i so that M is direct sum of N/2 copies of $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Skew-orthogonal polynomials. Then $M^{-1} = -M$.

Scaling as $N\to\infty$. For the Gaussian unitary ensemble $w(x)=e^{-x^2}$. The eigenvalues fill out $(-\sqrt{2N},\sqrt{2N})$, more or less. The p_i are normalized Hermite polynomials and their asymptotics shows that for fixed z

$$\frac{1}{\sqrt{2N}}K_N\left(z+\frac{x}{\sqrt{2N}},z+\frac{y}{\sqrt{2N}}\right)$$

$$\to \frac{1}{\pi}\frac{\sin(x-y)}{x-y} \quad \text{(sine kernel)}$$

("bulk scaling").

Largest eigenvalue $\approx \sqrt{2N}$.

$$\frac{1}{2^{1/2}N^{1/6}}K_N\left(\sqrt{2N} + \frac{x}{2^{1/2}N^{1/6}}, \sqrt{2N} + \frac{y}{2^{1/2}N^{1/6}}\right)$$

$$\rightarrow \frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)A(y)}{x - y} \quad \text{(Airy kernel)}$$

("edge scaling"). Thus scaling limit of correlation functions in bulk is $\det(K_{\text{sine}}(x_i, x_j))$, and at edge is $\det(K_{\text{Airy}}(x_i, x_j))$.

Universality theorems say that the same limiting kernels K_{Sine} and K_{Airy} arise from bulk and edge scaling for "general" random matrix ensembles. Universality of bulk scaling was proved for large classes of orthogonal polynomial ensembles by Pastur-Scherbina (1996) and for both bulk and edge scaling by Deift-McLaughlin-Kriecherbauer-Venakides-Zhou (1997). For the symmetric matrix analogues with a special class of weights edge and bulk universality was proved by Deift-Gioev (2005). Edge scaling universality for Wigner ensembles (matrices with independent entries) was proved by Soshnikov (1999). Open problem: Universality in the bulk for other than orthogonal polynomial ensembles.