Correlation Functions for Orthogonal
Polynomial Random Matrix Ensembles

Ensembles of N x N Hermitian matrices
H = (H;;) = (H{f + i Hj)).
Measure
dH = [ Hy; ] aH;} [] dHY;
i i<j i<j
Invariant under H — U~1 HU with U unitary.
Consider probability measures
Ce—tI’V(H) dH,

called “unitary ensembles”, or “orthogonal poly-
nomial ensembles’” for reasons to appear.

Divide out by unitary part. Find that if eigen-
values are A1 < ---An then density function is

P(z) = ey [[ (x5 — 2)? [ w(=s),
i<j i

where w(z) = e~V (@),

The probability density that there are eigen-

values near yi1,---,yn IS the n-point correlation
Rn(y1,---,yn) function given by

N
(N_n)./"'/P(yla---,yzv)dyn+1---dyN.




How to find a nice formula for these? Clue. If
F'is a symmetric function then

E(F(A1, -5 AN))
:/'"/P(afla"‘aCUN)F(xla"'afEN)dafl"'de-

If F(z1, -+, 2zN) = [lj<n 0(z; —y;), sSymmetrized,
then Ry =E(F(\, -, AN)).

Consider F' of the form

N
F(z) =[] (1 + f(=:).
=1

1=
We'll find an integral operator K with kernel
of the form

N
K(z,y) = Y oi(x) ¢ (y).
i=1
such that the expected value equals

det (I + Kf),

where f here denotes multiplication by the func-
tion f. The determinant equals

det (6;; + (w4, ¥ f))f;szl-



Start with
E ([TQ+ fO0)))

—cn [+ [ H@i-2)? [Tlw(z) A+ @))] da.
1<J (
The right side should equal 1 when f = 0.

General identity (Andréief 1883):

/---/detUi(CUj) detvi(xj) dv(zy)---dv(xn)

= N! det (/ u;(z) vi(x) dz/(a:)) :

Taking u;(z) = v;(z) = z*, dv(z) = (1+f(2)) w(x) dz,
we see that E ([T(1 + f(\;))) equals
N—-1

c det (/ 2T (1 + f(2)) w(z) d:c)

t,j=0

Replacing z* by p;(z), any polyomial of de-
gree ¢, amounts to row and column operations.

If we set p;(x) = p;(z) /w(x) then above be-
comes becomes

dedet ([ oi(@) oi(@) dz + [ oile) i) f(a)da) .



Take the p; to be the polynomials ON with
respect to w, so the ¢; are ON with respect to
Lebesgue measure. Taking f = 0, get c?’\, = 1.
So expected value equals

det (ij + (¢i, ¢; /) = det (I + K f)
where K has kernel

N—-—1
Kn(z,y) = > ¢i(z) ¢i(y).
1=0

Hence “orthogonal polynomial ensembles’ .

If p; arbitrary set

M = (mij) = ([ i@ ei(@yde), M1 = (),

Vi = D i i
J
Factoring out M on the left, get
e det (55 + [ i@) oy(@) f(a) do),

where ¢ = (det M) ¢, Now taking f =0, get
c% =1 and

Kn(z,y) = 3 i@ $i(y) = > ei(e) nij 05 ()
1 1,7



Special case f = —X : Probability that J con-
tains no eigenvalues equals det (I — K xj). If
J = (s, 0o) this is the distribution function for
the largest eigenvalue.

Correlation functions. R,(y1,---,yn) €quals co-
efficient of z71--- 2z, Iin expansion of

/"'/P(wla'“,wj\f)il]jl {1+r§:12r5(wi—yr)

Integrals in matrix entries become sums, and
above equals

det (0rs + K (yr, ¥s) 2s)ys=15

coefficient of z1--- 2z, equals

det (K (yr, ys))r s=1

Orthogonal ensembles (real symmetric matri-
ces). Formulas become dH = [Li<j dH;j,

E (T + rO0))
=ey [+ [ Ilei=ajl MMt A+ f@)) de

1<J



Assume N even and use (de Bruijn 1955)
/- : / det(u;(z;)) dry---dry
x1<-<xN

N

= Pf (/ / san(y — z) ui(@) u;j(y) dy dw>z‘,j=1

(Square of Pfaffian equals determinant.) Set

e(x) = %sgn(ac), let p; be arbitrary, ¢; = p; vw,
and find that the square of expected value
equals determinant of the matrix with 2, 5 entry

ey | [ 2@—y) 0i@) 0() (141 (@) 1+ () dy da.
Let

M = (//s(w —y) wi(z) v;(y) dyd:v),
M~ = (uy), = Zm‘j ©;,
J

and factor out M, so ¢;(x) is replaced by ,;(x).
Define

(ep)(@) = [ (@~ y) e (y) dy.

What results is c§v times the determinant of
the matrix with 7,5 entry 52-]- plus

/ f [Wiep; —ev o —e(fib) ;] d.



Take f = 0, get ¢y = 1. Integrand equals f
times the matrix product

L]
(—e; —e(fi) i)

€P;
Determinant equals determinant of I plus op-
erator with matrix kernel. (What is behind this
is general identity det(/+ AB) = det(I+ BA).)
After some manipulation get that square of ex-
pected value equals det (/- Ky f) where (Dyson
notation)

SN(x,y) SND(xay)

ISN(z,y) —e(xz—y) Sn(y,z)

Kn(z,y) =

where

Sn(z,y) = — Z wi(x) pijepi(y),
i,]

ISN(z,y) = =) epi(x) uijepr(y),

N
SND(z,y) = > pi(x) pij ¢j(y).
N
Therefore R,(y1,---,yn) €quals the coefficient

of z1---2zn INn the expansion of

\/det (Or,s + Kn(yr, ys) zs).




To evaluate, use keneral fact det(I + K) =
exp{tr log({ + K)}.

Ro(y1, y2) = trKn(y1, y1) - tr Kn(y2, y2)

1

—Etr (Kn(y1, y2) Kn(y2, y1))-

Dyson showed that the correlation function can
be interpreted as quaternion determinant.

Want M1 to be as simple as possible. Choose
p; SO that M is direct sum of N/2 copies of

1 0
M-l =_M.

( 0 1 ) Skew-orthogonal polynomials. Then

Scaling as N — oo. For the Gaussian unitary
ensemble w(x) = e—*° The eigenvalues fill out

(—v2N, vV/2N), more or less. The p; are nor-
malized Hermite polynomials and their asymp-

totics shows that for fixed z

1
¢TTVKN< VeI Z+f>
sin(z — vy)
r—1Y

1
— (sine kernel)
T



( “bulk scaling™).

LLargest eigenvalue =~ v2N.

1 I~ x /SN Y
51/2N1/6 KN( N+ Siayie VAN T 21/2N1/6)
Ai(z) Ai'(y) — Ai'(z) Ay)

(Airy kernel)
L =Y

(“edge scaling”). Thus scaling limit of cor-

relation functions in bulk is det(Ksine(x;, x5)),

and at edge is det(Kajry(x;, z;)).

Universality theorems say that the same lim-
iting kernels Kgjne and Kajpy arise from bulk
and edge scaling for ‘‘general” random ma-
trix ensembles. Universality of bulk scaling
was proved for large classes of orthogonal poly-
nomial ensembles by Pastur-Scherbina (1996)
and for both bulk and edge scaling by Deift-
McLaughlin-Kriecherbauer-Venakides-Zhou (1997).
For the symmetric matrix analogues with a
special class of weights edge and bulk univer-
sality was proved by Deift-Gioev (2005). Edge
scaling universality for Wigner ensembles (ma-
trices with independent entries) was proved by
Soshnikov (1999). Open problem: Universality
in the bulk for other than orthogonal polyno-
mial ensembles.



