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ELEMENTARY STATISTICS

Collection of (real-valued) data from a sequence of experiments

X 1; X 2; : : : ; X n

Might make assumption underlying law is N (�; � 2) with unknown
mean � and variance � 2. Want to estimate � and � 2 from the data.

Sample Mean & Sample Variance :

�X =
1
n

X

j

X j ; S =
1

n � 1

X

j

�
X j � �X

� 2

Estimators are \unbiased"

E( �X ) = �; E(S) = � 2
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Theorem: If X 1; X 2; : : : are independentN (�; � 2) variables then
�X and S are independent. We have that �X is N (�; � 2=n) and

(n � 1)S=� 2 is � 2(n � 1).

Recall � 2(d) denotes the chi-squared distribution with d degrees of
freedom. Its density is

f � 2 (x) =
1

2d=2 �( d=2)
xd=2� 1 e� x= 2 ; x � 0;

where

�( z) =
Z 1

0
tz� 1 e� t dt; < (z) > 0:
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MULTIVARIATE GENERALIZATIONS

From the classic textbook of Anderson[1]:

Multivariate statistical analysis is concerned with data t hat
consists of sets of measurements on a number of individuals
or objects. The sample data may be heights and weights of
some individuals drawn randomly from a population of
school children in a given city, or the statistical treatment
may be made on a collection of measurements, such as
lengths and widths of petals and lengths and widths of
sepals of iris plants taken from two species, or one may
study the scores on batteries of mental tests administered
to a number of students.

p = # of sets of measurements on a given individual,

n = # of observations = sample size
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Remarks:

� In above examples, one can assume thatp � n since typically
many measurements will be taken.

� Today it is common for p � 1, son=p is no longer necessarily
large.

Vehicle Sound Signature Recognition: Vehicle noise is a
stochastic signal. The power spectrum is discretized to a
vector of length p = 1200 with n � 1200 samples from the
same kind of vehicle.

Astrophysics: Sloan Digital Sky Survey typically has many
observations (say of quasar spectrum) with the spectra of
each quasar binned resulting in a largep.

Financial data: S&P 500 stocks observed over monthly
intervals for twenty years.
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GAUSSIAN DATA MATRICES

The data are now n independent column vectors of lengthp

~x1; ~x2; : : : ; ~xn

from which we construct the n � p data matrix

X =

0

B
B
B
B
B
B
@

 � ~xT
1 �!

 � ~xT
2 �!

...

 � ~xT
n �!

1

C
C
C
C
C
C
A

The Gaussian assumption is that

~xj � Np(�; �)

Many applications assume the mean has been already substracted
out of the data, i.e. � = 0.
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Multivariate Gaussian Distribution

If x and y are vectors, the matrix x 
 y is de�ned by

(x 
 y) jk = x j yk

If � = E(x) is the mean of the random vectorx, then the
covariance matrix of x is the p � p matrix

� = E [(x � � ) 
 (x � � )]]

� is a symmetric, non-negative de�nite matrix. If � > 0 (positive
de�nite) and X � Np(�; �), then the density function of X is

f X (x) = (2 � ) � p=2(det �) � 1=2 exp
�
�

1
2

�
x � �; � � 1(x � �

�
�

; > x 2 Rp

Sample mean:

�x =
1
n

X

j

~xj ; E(�x) = �
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Sample covariance matrix:

S =
1

n � 1

nX

j =1

(~xj � �x) 
 (~xj � �x)

For � = 0 the sample covariance matrix can be written simply as

1
n � 1

X T X

Some Notation: If X is a n � p data matrix formed from the n
independent column vectorsx j , cov(x j ) = �, we can form one
column vector vec(X ) of length pn

vec(X ) =

0

B
B
B
B
B
B
@

x1

x2

...

xn

1

C
C
C
C
C
C
A
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The covariance of vec(X ) is the np � np matrix

I n 
 � =

0

B
B
B
B
B
B
@

� 0 0 � � � 0

0 � 0 � � � 0
...

...
... � � �

...

0 0 0 � � � �

1

C
C
C
C
C
C
A

In this case we say the data matrixX constructed from n
independent x j � Np(�; �) has distribution

Np(M; I n 
 �)

where M = E(X ) = 1 
 � , 1 is the column vector of all 1's.
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WISHART DISTRIBUTION

De�nition: If A = X T X where the n � p matrix X is
Np(0; I n 
 �), � > 0, then A is said to haveWishart distribution
with n degrees of freedom and covariance matrix �. We will sayA
is Wp(n; �).

Remarks:

� The Wishart distribution is the multivariate generalizati on of
the chi-squared distribution.

� A � Wp(n; �) is positive de�nite with probability one if and
only if n � p.

� The sample covariance matrix,

S =
1

n � 1
A

is Wp(n � 1; 1
n � 1 �).
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WISHART DENSITY FUNCTION , n � p

Let Sp denote the space ofp � p positive de�nite (symmetric)
matrices. If A = ( ajk ) 2 Sp, let

(dA) = volume element of A =
^

j � k

dajk

The multivariate gamma function is

� p(a) =
Z

Sp

e� tr( A ) (det A)a� (p+1) =2 (dA); < (a) > (p � 1)=2:

Theorem: If A is Wp(n; �) with n � p, then the density function
of A is

1
2np � p(n=2) (det �) n= 2

e� 1
2 tr(� � 1 A ) (det A)(n � p� 1)=2

11



Sketch of Proof:

� The density function for X is the multivariate Gaussian
(including volume element (dX ))

(2� ) � np= 2 (det �) � n= 2 e� 1
2 tr(� � 1 X T X ) (dX )

� Recall the QR factorization [8]: Let X denote ann � p matrix
with n � p with full column rank. Then there exists an unique
n � p matrix Q, QT Q = I p, and an uniquen � p upper
triangular matrix R with positive diagonal elements so that
X = QR. Note A = X T X = RT R.

� A Jacobian calculation [1, 13]: If A = X T X , then

(dX ) = 2 � p (det A)(n � p� 1)=2 (dA)(QT dQ)
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where

(QT dQ) =
p̂

j =1

n̂

k= j +1

qT
k dqj

and Q = ( q1; : : : ; qp) is the column representation ofQ.

� Thus the joint distribution of A and Q is

(2� ) � np= 2 (det �) � n= 2 e� 1
2 tr(� � 1 A ) �

2� p (det A)(n � p� 1)=2 (dA)(QT dQ)

� Now integrate over all Q. Use fact that
Z

Vn;p

(QT dQ) =
2p � np= 2

� p(n=2)

and Vn;p is the set of realn � p matrices Q satisfying
QT Q = I p. (When n = p this is the orthogonal group.)
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Remarks regarding the Wishart density function

� Casep = 2 obtain by R. A. Fisher in 1915.

� General p by J. Wishart in 1928 by geometrical arguments.

� Proof outlined above came later. (See [1, 13] for complete
proof.)

� When Q is a p � p orthogonal matrix

� p(p=2)
2p � p2 =2

�
QT dQ

�

is normalized Haar measurefor the orthogonal group O(p). We
denote this Haar measure by (dQ).

� Siegel proved (see, e.g. [13])

� p(a) = � p(p� 1)=4
pY

j =1

�
�

a �
1
2

(j � 1)
�
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EIGENVALUES OF A WISHART MATRIX

Theorem: If A is Wp(n; �) with n � p the joint density function
for the eigenvalues`1,. . . , `p of A is

� p2 =2 2� np= 2 (det �) � n= 2

� p(p=2) � p(n=2)

pY

j =1

` (n � p� 1)=2
j

Y

j<k

j` j � `k j �

Z

O (p)
e� 1

2 tr(� � 1 QLQ T ) (dQ); (� 1 > � � � > � p)

where L = diag( `1; : : : ; `p) and (dQ) is normalized Haar measure.
Note that �( `) :=

Q
j<k (` j � `k ) is the Vandermonde.

Corollary: If A is Wp(n; I p), then the integral over the orthogonal
group in the previous theorem is

e� 1
2

P
j ` j :
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Proof: Recall that the Wishart density function (times the volume
element) is

1
2np � p(n=2) (det �) n= 2

e� 1
2 tr(� � 1 A ) (det A)(n � p� 1)=2 (dA)

The idea is to diagonalizeA by an orthogonal transformation and
then integrate over the orthogonal group thereby giving the density
function for the eigenvalues ofA.

Let `1 > � � � > ` p be the ordered eigenvalues ofA.

A = QLQ T ; L = diag( `1; : : : ; `p); Q 2 O (p)

The j th column of Q is a normalized eigenvector ofA. The
transformation is not 1{1 since Q = [ � q1; : : : ; � qp] works for each
�xed A. The transformation is made 1{1 by requiring that the 1st

element of eachqj is nonnegative. This restricts Q (as A varies) to
a 2� p part of O(p). We compensate for this at the end.
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We need an expression for the volume element (dA) in terms of Q
and L. First we compute the di�erential of A

dA = dQ L QT + Q dL QT + Q L dQT

QT dA Q = QT dQ L + dL + L dQT Q

= � dQt Q dL + L dQT Q + dL

=
�
L; dQT Q

�
+ dL

(We usedQT Q = I implies QT dQ = � dQT Q.)

We now use the following fact (see, e.g., page 58 in [13]): If
X = BY B T where X and Y are p � p symmetric matrices, B is a
nonsingular p � p matrix, then ( dX ) = (det B )p+1 (dY). In our case
Q is orthogonal so the volume element (dA) equals the volume
element (QT dAQ). The volume element is the exterior product of
the diagonal elements ofQT dA Q times the exterior product of the
elements above the diagonal.
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SinceL is diagonal, the commutator
�
L; dQT Q

�

has zero diagonal elements. Thus the exterior product of the
diagonal elements ofQT dA Q is

V
j d` j .

The exterior product of the elements coming from the commutator
is Y

j<k

(` j � `k )
^

j<k

qT
k dqj

and so
(dA) =

^

j<k

qT
k dqj �( `)

^

j

d` j

=
2p � p2 =2

� p(p=2)
(dQ) �( `)

^

j

d` j

The theorem now follows once integrate over all ofO(p) and divide
the result by 2p.
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� One is interested in limit laws as n; p ! 1 . For � = I p,
Johnstone [11] proved, using RMT methods, for centering and
scaling constants

� np =
� p

n � 1 +
p

p
� 2

;

� np =
� p

n � 1 +
p

p
�

�
1

p
n � 1

+
1

p
p

� 1=3

that
`1 � � np

� np

converges in distribution asn; p ! 1 , n=p ! 
 < 1 , to the
GOE largest eigenvalue distribution [15].

� El Karoui [6] has extended the result to 
 � 1 . The case
p � n appears, for example, in microarray data.

� Soshnikov [14] has lifted Gaussian assumption under the
additional restriction n � p = O( p1=3).
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� For � 6= I p, the di�culty in establishing limit theorms comes
from the integral

Z

O (p)
e� 1

2 tr(� � 1 Q� QT ) (dQ)

Using zonal polynomials in�nite series expansions have been
derived for this integral, but these expansions are di�cult to
analyze. See Muirhead [13].

� For complex Gaussian data matricesX similar density formulas
are known for the eigenvalues ofX � X . Limit theorems for
� 6= I p are known since the analogous group integral, now over
the unitary group, is known explicitly|the Harish
Chandra{Itzykson{Zuber (HCIZ) integral (see, e.g. [17]). See
the work of Baik, Ben Arous and P�ech�e [2, 3] and El Karoui [7] .
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PRINCIPAL COMPONENT ANALYSIS (PCA) ,
H. Hotelling, 1933

Population Principal Components: Let x be a p � 1 random
vector with E(x) = � and cov(x) = � > 0. Let � 1 � � 2 � � � � � � p

denote the eigenvalues of � andH an orthogonal matrix
diagonalizing �: H T � H = � = diag( � 1; : : : ; � p). We write H in
column vector form

H = [ h1; : : : ; hp]

so that hj is the p � 1 eigenvector of � corresponding to eigenvalue
� j . De�ne the p � 1 vector

u = H T x = ( u1; : : : ; up)T

then cov(u) = E
�
(H T x � H T � ) 
 (H T x � H T � )

�

= H T E ((x � � ) 
 (x � � )) H

= H T � H = � ) uj uncorrelated:
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De�nition: uj is called the j th principal component of x. Note
var(uj ) = � j .

Statistical interpretations: The claim is that u1 is that linear
combination of components ofx that has maximum variance.

Proof: For simplicity of notation, set � = 0. Let b denote anyp � 1
vector, bT b = 1, and form bT x.

var(bT x) = E
�
bT x � bT x

�
= E

�
bT x � (bT x)T �

= bT E(xx T )b = bT � b:

We want to maximize the right hand side subject to the constraint
bT b = 1. By the method of Lagrange multipliers we maximize

bT � b� � (bT b� 1)

Since � is symmetric the vector of partial derivatives is

2� b� 2�b

Thus b must be an eigenvector with eigenvalue� .
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The largest variance corresponds to choosing the largest eigenvalue.

The general result is that ur has maximum variance of all
normalized combinations uncorrelated with u1,. . . , ur � 1.

Sample principal components: Let S denote the sample
covariance matrix of the data matrix X and let Q = [ q1; : : : ; qp] a
p � p orthogonal matrix diagonalizing S:

QT S Q = diag( `1; : : : ; `p)

The ` j are the sample variancesthat are estimates for � j . The
vectors qj are sample estimatesfor the vectors hj .

If x is the random vector and u = H T x is the vector of principal
components, thenû = QT x is the vector of sample principal
components.
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SCREE PLOTS

In applications: How many of the ` j 's are signi�cant?
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CANONICAL CORRELATION ANALYSIS (CCA)
H. Hotelling, 1936

Suppose a large data set is naturally decomposed into two groups.
For example, p � 1 random vectors~x1,. . . , ~xn make up one set and
q � 1 random vectors~y1,. . . , ~ym the other. We are interested in the
correlations between these two data sets. For example, in medicine
we might have n measurements of age, height, and weight (p = 3)
and m measurements of systolic and diastolic blood pressures
(q = 2). We are interested in what combination of the components
of x is most correlated with a combination of the components ofy.

Population Canonical Correlations: Let x and y be two
random vectors of sizep � 1 and q � 1, respectively. We assume
E(x) = E(y) = 0 and p � q. Form the (p + q) � 1 vector

0

@ x

y

1

A
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and its (p + q) � (p + q) covariance matrix

� =

0

@ � 11 � 12

� 21 � 22

1

A :

Let
u := � T x 2 R; v := 
 T y 2 R

where � and 
 are vectors to be determined. We want to maximize
the correlation

corr(u; v) =
cov(u; v)

p
var(u)var( v)

The correlation does not change under scale transformations
u ! cu, etc. so we can maximize this correlation subject to the
constraints

E(u2) = E(� T x � � T x) = � T � 11� = 1 (1)

E(v2) = 
 T � 22
 = 1 (2)
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Under these constraints

corr(u; v) = E(� T x � 
 T y) = � T � 12
:

Let
 = � T � 12
 �

1
2

� (� T � 11� � 1) �
1
2

� (
 t � 22
 � 1)

where � and � are Lagrange multipliers. Set the vector of partial
derivatives to zero:

@ 
@�

= � 12
 � � � 11� = 0 (3)

@ 
@


= � T
12� � � � 22
 = 0 (4)

If we left multiply (3) by � T and (4) by 
 T , use the normalization
conditions (1) and (2) we conclude� = � . Thus (3) and (4) become

0

@ � � � 11 � 12

� 21 � � � 22

1

A

0

@ �




1

A = 0 (5)
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with corr(u; v) = �

and � � 0 is a solution to

det

0

@ � � � 11 � 12

� 21 � � � 22

1

A = 0

This is a polynomial in � of degree (p + q). Let � 1 denote the
maximum root and � 1 and 
 1 corresponding solutions to (5).

De�nition: u1 and v1 are called the�rst canonical variables and
their correlation � 1 = corr( u1; v1) is called the �rst canonical
correlation coe�cient .

More generally, the rth pair of canonical variables is the pair of
linear combinations ur = ( � ( r ) )T x and vr = ( 
 ( r ) )T y, each of unit
variance and uncorrelated with the �rst r � 1 pairs of canonical
variables and having maximum correlation. The correlation
corr(ur ; vr ) is the r th canonical correlation coe�cient .
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REDUCTION TO AN EIGENVALUE PROBLEM

Since 0

@ � � � 11 � 12

� 21 � � � 22

1

A =

0

@ � 11 0

0 1

1

A

0

@ � �I � � 1
11 � 12� � 1

22

� 21 � �I

1

A

0

@ 1 0

0 � 22

1

A

Thus the determinantal equation becomes

det
�
� 2I � � 21� � 1

11 � 12� � 1
22

�
= 0

The nonzero roots� 1, . . . , � k are called thepopulation canonical
correlation coe�cients . k = rank(� 12).

In applications � is not known. One uses the sample covariance
matrix S to obtain sample canonical correlation coe�cients .
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AN EXAMPLE

The �rst application of Hotelling's canonical correlation s is by
F. Waugh [16] in 1942. He begins his paper with

Professor Hotelling's paper, \Relations between Two Sets
of Variates," should be widely known and his method used
by practical statisticians. Yet, few practical statistici ans
seem to know of the paper, and perhaps those few are
inclined to regard it as a mathematical curiosity rather
than an important and useful method for analyzing
concrete problems. This may be due to . . .

The Practical Problem: Relation of wheat characteristics to

our characteristics. Guiding principle

The grade of the raw material should give a good
indication of the probable grade of the �nished product.
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The data: 138 samples of Canadian Hard Red Spring wheat and
the 
our made from each these samples.a

wheat quality 
our quality

x1 = kernel texture y1 = wheat per barrels of 
our

x2 = test weight y2 = ash in 
our

x3 = damaged kernels y3 = crude protein in 
our

x4 = crude protein in wheat y4 = gluten quality index

x5 = foreign material

u1 = � T
1 x = index of wheat quality ; v1 = 
 T

1 y = index of 
our quality

corr(u1; v1) = 0 :909

a In this example p > q . The data are normalized to mean 0 and variance 1.
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DISTRIBUTION OF SAMPLE CANONICAL
CORRELATION COEFFICIENTS

Give a sample of sizen observations on

0

@ x

y

1

A drawn from

Np+ q(�; �) and A the (unnormalized) sample covariance matrix.
Then W is Wp+ q(n; �). We have [13]

Theorem (Constantine, 1963): Let A have the Wp+ q(n; �)
distribution where p � q, n � p + q and � and A are partitioned as
above. Then the joint probability density function of r 2

1 ,. . . , r 2
p , the

eigenvalues ofA � 1
11 A12A � 1

22 A21 (let � j := r 2
j ) is

cp;q;n

pY

j =1

(1� � 2
j )n= 2

pY

j =1

h
� (q� p� 1)=2

j (1 � � j )(n � p� q� 1)=2
i
�j �( � )j �F (� )

where
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� cp;q;n is a normalization constant.

� �( � ) = Vandermonde determinant =
Q p

j<k (� j � � k ).

� F (� ) is a two-matrix hypergeometric function which can be
expressed as an in�nite series involving zonal polynomials. See
Theorem 11.3.2 and De�nition 7.3.2 in Muirhead [13].

Null Distribution : For � 12 = 0 ( x and y are independent), the
above joint density for the sample canonical correlation coe�cients
reduces to

cp;q;n

pY

j =1

h
� (q� p� 1)=2

j (1 � � j )(n � p� q� 1)=2
i

� j �( � )j

In this case the distribution of the largest sample canonical
correlation coe�cient r 1 can be used for testing the null hypothesis:
H : � 12 = 0. We reject H for large values ofr 1.
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ZONAL POLYNOMIALS

Zonal polynomials naturally arise in multivariate analysi s when
considering group integrals such as

Z

O (m )
e� tr( XHY H T ) (dH )

where X and Y are m � m symmetric, positive de�nite matrices
and (dH ) is normalized Haar measure. Zonal polynomials can be
de�ned either through the representation theory of GL(m; R) [12]
or as eigenfunctions of certain Laplacians [5, 13].

Let Sm denote the space ofm � m symmetric, positive de�nite
matrices. Zonal polynomials,C� (X ), X 2 Sm are certain
homogeneous polynomials in the eigenvalues ofX that are indexed
by partitions � .

To give the precise de�nition we need some preliminary de�nitions.
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De�nition: A partition � of n is a sequence� = ( � 1; � 2; : : : ; � ` )
where the � j � 0 are weakly decreasing and

P
j � j = n. We denote

this by � ` n.

For example, � = (5 ; 3; 3; 1) is a partition of 12. The number of
nonzero parts of� is called the length of � , denoted `(� ).

If � and � are two partitions of n, we say� < � (lexicographic
order) if, for some index i , � j = � j for j < i and � j < � j . For
example

(1; 1; 1; 1) < (2; 1; 1) < (2; 2) < (3; 1) < (4)

If � ` n with `(� ) = m, we de�ne the monomial

x � = x � 1
1 x � 2

2 � � � x � m
m

and say x � is of higher weight than x � if � > � .
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Metrics and Laplacians

Let X 2 Sm and dX = ( dxjk ) the matrix of di�erentials of X . We
de�ne a metric on Sm by

(ds)2 = tr
�
X � 1dX � X � 1dX

�

A simple computation shows this metric is invariant under

X �! LXL T ; L 2 GL(m; R):

Let n = m(m + 1) =2 = # of independent elements of X . We denote
by vec(X ) 2 Rn the column vector representation ofX , e.g.

X =

0

@ x11 x12

x12 x22

1

A ; x := vec(X ) =

0

B
B
@

x11

x12

x22

1

C
C
A

The metric (ds)2 is a quadratic di�erential in dx.
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For example,

(ds)2 =
�

dx11 dx12 dx22

�
� G(x) �

0

B
B
@

dx11

dx12

dx22

1

C
C
A

where

G(x) = ( gij ) =

1
(x11x22 � x2

12)2

0

B
B
@

x2
22 � 2x12x22 x2

12

� 2x12x22 2x11x22 + 2x2
12 � 2x11x12

x2
12 � 2x11x12 x2

11

1

C
C
A

Labeling x = vec(X ) with a single index the di�erential is in the
standard form

(ds)2 =
X

i<j

dxi gij dxj
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and the Laplacian associated to this metric is

� X = (det G) � 1=2
nX

j =1

@
@xj

"

(det G)1=2
nX

i =1

gij @
@xi

#

where

G� 1 = ( gij )

More succinctly, if

r X =

0

B
B
B
@

@
@x1
...
@

@xn

1

C
C
C
A

;

� X = (det G) � 1=2
�

r X ; (det G)1=2G� 1r X

�

where (�; �) is the standard inner product on Rn .
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One can show that � X is an invariant di�erential operator :

� LXL T = � X ; L 2 GL(m; R)

We now diagonalizeX

X = HY H T ; Y = diag( y1; : : : ; ym ); H 2 O (m):

The Laplacian � X is now expressed in terms of aradial part and
an angular part. The radial part of � X is the di�erential operator

mX

j =1

y2
j

@2

@y2j
+

mX

j =1

mX

k =1
k 6= j

y2
j

yj � yk

@
@yj

+
X

j

yj
@

@yj

We now let � X denote only the radial part.

We can now de�ne zonal polynomials!
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De�nition: Let X 2 Sm with eigenvaluesx1,. . . , xm and let
� = ( � 1; : : : ; � � m) ` k into not more than m parts. Then C� (X ) is
the symmetric, homogeneous polynomial of degreek in x j such that

1. The term of highest weight in C� (X ) is x �

2. C� (X ) is an eigenfunction of the Laplacian � X .

3. (tr( X )) k = ( x1 + � � � + xm )k =
X

� ` k
` ( � ) � m

C� (X ):

Remarks:

� Must show there is an unique polynomial satisfying these
requirements.

� Eigenvalue in (2) equals� � :=
P

j � j (� j � j ) + k(m + 1) =2.

� Program MOPS [5] computes zonal polynomials.
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The following theorem is at the core of why zonal polynomials
appear in multivariate statistical analysis.

Theorem: If X; Y 2 Sp, then
Z

O (p)
C� (XHY H T ) (dH ) =

C� (X )C� (Y )
C� (I p)

(6)

where (dH ) is normalized Haar measure.

Proof: Let f � (Y ) denote the left-hand side of (6) andQ 2 O (p).
f � (QY QT ) = f � (Y ) (let H ! HQ in integral and use invariance of
the measure). Thusf � is a symmetric function of the eigenvalues of
Y . SinceC� is homogeneous of degreej� j, so is f � . Now apply the
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Laplacian to f � .

� Y f � (Y ) =
Z

O (p)
� Y C� (XHY H T ) (dH )

=
Z

� Y C� (X 1=2HY H T X 1=2) (dH )

=
Z

� Y C� (LY L T ) (dH ) (L = X 1=2H )

=
Z

� LY L T C� (LY L T ) (dH ) invariance of � Y

= � �

Z
C� (LY L T ) (dH )

= � � f � (Y )

By de�nition of C� (Y ) we have f � (Y ) = d� C� (Y ). Since
f � (I p) = C� (X ), we �nd d� and the theorem follows.
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Using Zonal Polynomials to Evaluate Group Integrals
Z

O (p)
e� � tr( XHY H T ) (dH )

=
1X

k=0

� k

k!

Z

O (p)

�
tr( XHY H t )

� k
(dH )

=
1X

k=0

� k

k!

X

� ` k
` ( � ) � m

Z

O (p)
C� (XHY H T ) (dH )

=
1X

k=0

� k

k!

X

� ` k
` ( � ) � m

C� (X )C� (Y )
C� (I p)
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