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Why estimate covariance?
2 Principal component analysis (PCA)
2 Linear or quadratic discriminant analysis (LDA/QDA)

2 Inferring independence and conditional independence (graphical

models)
2 Inference about the mean (e.g. longitudinal mean response curve)

Covariance itself is usually not the end goal:
— PCA requires estimation of the eigenstructure

— LDA/QDA and conditional independence require the inverse
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What's wrong with the sample covariance matrix?

Observe X 1;:::; X, i.i.d. p-variate random variables
1 T
z:ﬁ;(xi i X)(Xii X)

2 MLE, unbiased (almost), well-behaved (and well studied) for x ed P,

n! 1 .Butverynoisy if pis large.

2 Eigenvalues overdispersed [Marcenko-Pastur (1967), Wachter (1978),
Geman (1980), Bai and Yin (1993), Johnstone (2001), Paul (2004)]

2 Eigenvectors are not consistent (Johnstone and Lu, 2004)
2 LDA breaks down if p=n! 1 (Bickel and Levina, 2004)

2 Singularif p> n
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Alternatives to the sample covariance matrix
|. Steinian shrinking of sample eigenvalues
2 First proposed by Stein (Rietz lecture, 1975)
2 Empirical Bayes (Haff, 1980): 1/42 + Y21 , Y2, Y2 depend on p, N only

2 Minimax shrinkage (Stein, Dey and Srinivasan (1985)): adjusted

eigenvalues are neither positive nor ordered

2 Ledoit and Wolf (2003): 1/42 + Yol , optimal %3, Y2 estimated from

data

2 The form 1/32 + 141 also used in other contexts:
— original formulation of ridge regression (Hoerl and Kennard, 1970),

— regularized discriminant analysis (Friedman, 1989)

All these do not change eigenvectors.
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ll. Cholesky decomposition

Pourahmadi (1999): longitudinal data

2 Any p-variate X with mean O and covariance >.: regress X on

Xj-1;:15,X1
] —1
Xi =2 AXg "j=Xji Xji df = var("))
|=1
2 Let A = [Ajt] (lower triangular), T =1 | A, D = diag(djz). Write

A

=X X=TX
Independence of residuals ) modied Cholesky decomposition:
D=TXT"; > 1=T7'D!T

2 Transforms covariance estimation into a regression problem
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Estimator s based on Cholesky decomposition
Are always positive de nite (X"t =TTD1T)
Shrink elements of T

Not invariant under variable permutations ) most appropriate when
there is a natural ordering in the data (e.g., time series, longitudinal

data, spectroscopy, etc)

Implicitly assume i j | ] large implies X and X nearly independent

given the intervening variables
Become singular if P > N unless regularized

Give a natural estimate of y-1 rather than X
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2 Wu and Pourahmadi (2003)
— Banding: smooth the rst K sub-diagonals with a spline, set the rest
to 0. Choose K by AIC/BIC.

— Element-wise convergence with rates determined by splines

2 Huang, Liu, Pourahmadi, and Liu (2006)

—Fit T and D by maximum likelihood with lasso or ridge penalty

2 Levina and Zhu (2006...in progress)

— Adaptive banding with a hierarchical lasso penalty
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lll. Regularization by banding or tapering
2 Replace 3 with 3 o R, where @ means Schur (element-wise) product
2 If R is positive de nite , so is Y oR
Examples:
2 Banding (not positive de nite):
Rie(i; 1) =210ii Jj- k)

2 “Triangular” Iter : banded, positive de nite

Ric(ii ]) = (11 "LL’;"L

2 “Exponential” lter : positive de nite but not banded

R3/4(|’ J ) — e_“g% — %I_J |
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2 Banding Toeplitz matrices (Bickel and Levina, 2004):
— leads to convergence to Bayes risk for LDA

— not evaluated in the context of general estimation

2 Tapering (Furrer and Bengtsson, 2006):
— Tapering covariance in the context of Kalman lIter ing
_ R is a function of 3

— Some convergence results in Frobenius norm
2 Also not invariant under permutations (need a natural ordering)

2 Implicitly assume J1 j ] ] large implies X and X nearly uncorrelated

There are other estimator s...
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Convergence of regulariz ed estimator s
Bickel and Levina (2006)

2 All results in operator norm, a.k.a. the matrix L2 norm : for symmetric

positive de nite M ,
kM k — 5 max(M )

2 Results uniform over classes of covariance matricesas p;n! 1

Banding the covariance matrix: de ne the class
U(HO;®;C) = {Z :0< "0 , min (E) ", max(z) - 1=";
max > fj¥%j:jii jj> kg- Ck ®oralk 0}
j ZJ gicdii ji> kg , 0}

Includes stationary processes with bounded smooth spectral density +

well-behaved non-stationary noise
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Main Result |
Banded estimator:
Skip(i; 1) = Sp(i; 1) 61Gi i §j - k)
Theorem 1: If X is Gaussian and Kn 3 (712 1log p)_®+l, then,
uniformly on 32 2 U("o; ®; C),

®
KSknp i Spk = Op ((nlz2 logp) ) = kS i Ttk

The banded estimator and its inverse are consistent if IO% 0.
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Extensions

2 Gaussianity may be replaced by
P(XZ>1t)- Ce ' forall]

2 The theorem also holds for 3 0 Rs, where

& f;l /;4b> )

Ry (a;b) =g (

where ¥/4s a metric on the set of variable labels, g is continuous,
non-increasing, 9(0) = 1,g(1 ) = 0, and %> 0.

— includes triangular and exponential lters

2 Also show that under the “spike” model, the estimated top eigenvalues

and the corresponding eigenvectors are close to the truth

12
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Banding the Cholesky factor
Center variables

XJ _k; get new matrices of coef cients

Ak and residual variances Dk de ne Tk = | j Ak and let
“l1 AT o1
Ek;p = T T

"
Sep = ToDWT YT

E;l is K-banded nonnegative de nite; ik IS In general not banded,

and different from f)k

Similarly, f] o

when P > nN.

IS not the same as banded E Which IS ill-de ned

13
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Main result |l
De ne a class of covariance matrices: if X =1 = T(X)TD (X))~ 1T (%),
u- (07C®) {Z 0<% ,min(z)' ,max(z)' "61;
- - —® .
max Z jti (X)j - Ck™" forallk - pj 1}
j<i —k
Theorem 2: Uniformly for ¥ 2 U~1("(; C; ®), if X is Gaussian,
kn 3 (N~12logp)” 1, and n~2logp = op (1),

~

& ~
K i ho i Zp k= Op <(n1:2 log p) o ) =Kk, pi Spk:

14
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Choosing the banding parameter
Ideally want to minimize risk

R(k) = EkZx i Tk

Estimate via a resampling scheme:
2 Split the data into two samples of size N1, N, N times at random

A~ (O A (O
2 Let 2(1 ), 2(2 ) be the two sample covariance matrices from the © -th

split. The risk can be estimated by

N
A 1 A~ (O A (O
R(k) = 5 > k& ki 25k
0=1
2 We used N1 = n=3, N = 50, and the L 1 matrix norm instead of L ».

2 Same technique can be used for the Cholesky-based f]k
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Simulation examples: banding §
2 Tridiagonal X2 (covariance of MA(1)): always pick K = 1.
2 Covariance of AR(1): > 2 U
Yy = 14— |
n = 100, p = 10; 100; 200, 2= 0:1; 0:5; 0:9.
2 Fractional Gaussian noise (FGN): long-range dependence, not in U
% o= (G0 Ji+ D™ i j G i D]

H 2 |0:5; 1] is the Hurst parameter

H = 0:5 is white noise; H = 1 is perfect dependence

n = 100, p = 10; 100; 200, H = 0:5; 0:6; 0:7; 0:8; 0:9.

16
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Ratio of optimal K to pfor FGN

1 T T T T T T T
0.9 —&— Oracle k, p=10
—<— Oracle k, p=100
0.8 —+&— Oracle k, p=200
- © = Estimated k, p=10
0.7 v Estimated k, p=100
== Estimated k, p=200 . 2
0.6 RV
:\ \,

S 05 R .
0.4 Ol -
0.3 _
0.2 &, _
o &g _ee" A e ]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

2 The optimal amount of regularization is model dependent

2 The same model requires more regularization in higher dimensions

18
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Adaptive banding of the Cholesky factor

(Levina and Zhu, 2006)

Penaliz ed likelihood (Huang et al., 2006):

Assuming normality, the negative log-likelihood can be written as

n
‘(X1 X Y) = nlnjYj+ inTZ_lxi
-1
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Each ‘j can be minimized separately. To force shrinkage, minimize
min ' (X; %) + I (A))
Aj ;dj

LASSO penalty (Huang et al., 2006):

j—1
JA) =, ) iAq]
t=1

2 Shrinkage + sparsity: some Ajt =0

2 gparsein T, not necessarilyin =1 = TTD ~1T

20
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Hierar chical LASSO penalty
JA) = (JA“J iA 2] Jﬁu e YV s FY

iA -] JAJ i 2] JA 2]
2 Shrinkage + sparsity: IfAjt =02 Ajjo = Qforallj’ < t.

2 gparsein T and 271

2 Hierarchical LASSO =) Adaptive Banding of y—1

Banding Lasso Adaptive banding

)

21
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2 Scale could be an issue. Can replace J (Aj )b

Ji(A) = 1A 1) JAJJ—ZJ JAJJ 3J_|_¢¢¢_|_jAJj
Jﬁﬁj =y TR Ay iA 2

Ja(Ay) = 1ZJAHJ+ ZZV’Q:J

where A]-O;j _4 is the coef cient from regressing Xj on Xj_1 alone.

2 When data is not normal, using normal likelihood may be misleading.

Can instead t each regression by penalized least squares.

)

22
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The algorithm

Iterate between 1 and 2 until convergence

1. Fix AJ- , solve for d; (easy)

2. Fix dj , Solve for Aj . iterative procedure
2 |nitialize Aj(o) (e.g., solve with no penalty)

2 Given A-(k), we solve a ridge problem (here for J2 penalty)
J

n j—1
< (k+1) 1 _ , 2
AJ— — argrgl.n@ Z (Xij | ZAj;tXit)

+1Z -1-22

= JA,(k) =7 IAY] ¢JA§‘?+11

Tuning parameters selected on a validation set; , 2 is not important

23
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Simulation results
Three models (Huang et al., 2006):
>.1: ldentity

2o dp =011, AJ j—1 = 0:8and Ajjo = 0 otherwise
22_1 s tri-diagonal, corresponds to AR(1)

>3 dj = 0:1and Ajjo — 0:5li 17 (corresponds to MA(1))
2 In order to compare to Lasso, use quadratic loss:
A 12 2
A(ZS) =t (2— 5 |)

2 n =100, p = 30, 100, validation set size 100 (for selecting , ),loss

averaged over 50 replications

24
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Multivariate normal

25

p =30 p=100

Sample Lasso AB Sample Lasso AB
Y1 | 9.43(0.65) 0.55(0.12) 0.55(0.12) | 100.8(3.4) 2.05(0.24) 2.08(0.23)
Yo | 9.35(0.56) 1.89(0.23) 1.13(0.19) | 103.6(2.1) 9.92(1.11) 4.02(0.28)
s | 9.25(0.67) 8.93(1.06) 2.43(0.26) | 103.3(3.4) 101.2(5.7) 8.87(0.58)

Multivariate 13
p =30 p=100

Sample Lasso AB Sample Lasso AB
31 | 28.3(19.1) 3.11(0.90) 3.24(0.87) | 297.6(238.9) 12.2(4.5) 11.8(4.8)
Yo | 40.7(30.0) 8.17(4.04) 6.19(3.01) | 456.3(444.6)  46.3(38.1) 19.0(9.4)
Ys | 25.8(19.2) 19.2(13.6) 6.48(2.42) | 334.4(283.3) 144.8(113.0) 24.7(11.3)
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Preserving spar sity

Percentage of true zeros in the estimator

Cholesky factor T y1

Lasso AB Lasso AB
Y1;p=30 | 99.8(0.3) 99.6(0.9) | 99.8(0.3)  99.6(1.1)
Yi1;p =100 | 99.9(0.2) 100.0(0.1) | 99.9(0.2) 100.0(0.1)
Yo;p=30 | 71.7(4.3) 94.7(1.2) | 35.5(10.2) 94.7(1.2)
Yo;p =100 | 92.7(0.6) 99.0(0.7) | 76.0(3.1)  99.0(0.7)
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Mean Call Arrival Counts

10 15 20 25 30

Estimating large covariance matrices

Example: Call center data

2 Collected from a call center in a U.S. nancial organization for
n = 239 days in 2002 (Shen & Huang, 2005)

2 Each day (7am - 12am) was divided into 102 time intervals

2 Nijj : number of calls during the | th time interval on the i th day;

Xij = \/Nij + 14

o) 20 40 60 80 100
Time Interval

27
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Goal: forecast the call counts in the second half of the day using the

arrival counts in the rst half (Huang et al., 2006)

2 Assume multivariate normality

(1) 1
X D >
» N 1 11 12

x (2) 1o 221 222

Then
E (X(Z)jx(l)) — 1,4 22121—11()((1) i1 1)

2 Divide the data into training set (January to October) and testing set

(November and December): 239 = 205 + 34

2 For each time interval | , the average absolute forecast error is
239

1 .
AE; :3_4i§6lxij i Xijj )

28
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Forecast error

2.2

18

16

14

12

0.8

0.6

04
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Call center results

v Sample
— Banded T (k=19)
= —Lasso
— — -AB(ML)
— AB(LS)

10

15 20 25 30 35
Time point

29
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Open problems and gquestions
Analysis of penalty methods
Estimators invariant under permutations of variables
What loss functions are appropriate?
Direct optimization approaches (semi-de nite programming)
What are the implications for PCA and other applications?

Under what conditions would one bene t from using a particular

estimator?

30



