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Introduction

The limiting distribution function for the largest eigenvalues ( the
Tracy-Widom distribution) in Classical Random Matrix Ensembles

Fo(t) = Jim Fup(t) = lim_ Pa(Nax < t) (1)

have found many applications outside their initial discovery in random
matrix theory.

In these applications it is important to have correction terms to the
limiting distribution.

(For example, in statistics the sample size is always finite; and to assess
quantitatively the range of validity of limit laws, one needs finite N
correction terms.)

Thus the need of an expansion of Fy g in terms of N.
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Introduction contd

From the representation

. det(l —O’N72) = E2(0,J), for B =2;
Fus (¢) _{ det(l —onp) = E3(0,J), for3=1,4. (2)

as a Fredholm determinant of the integral operator with kernel
on,g(x,y) on the set J = [t,00).
Where for the unitary ensemble 3 =2,
Kn(x.y) = Thlo ou(x)exly),  Guassian
on2(x,y) = o :
Ki(x,y) = Z;é %, Laguerre
the orthogonal ensemble

eKy—e+tep®ep Ky+ep®y

and for the Symplectic ensemble

i) i= (g VS ROIS) e

1 Kyn+v®ep KyD—-9v®ep
0'N,4(X7Y)-— 2 < Ky +ev®ep Ky+ep@t (4)
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Introduction contd

With
/ . . . 1
DS(x) := S (x) is the differentiation operator, e(x) = Esgn(x)
1 x%/2 (e a/2 x/2 1«
en(x) = (2nnl\/7)1/2 Hy(x) e ;o Pn(x)=x""e L5 (%),

are obtained from the orthogonalizing the sequence x"e~ V()

N 1 N 1
QO(X) = (5)4 @”(X)v and w(X) = (5)4 Spn—l(X)
The representations

E1(0,J)> = Ex(0,J)det(] — (Kn + RKn)(1 — x)exD)

= B0 {0- )0~ 3R - 3l - <7

E(0,J/V2? = Ex(0, J)det(l — %(KN + R)KnelxD))




The goal for 3 = 2 is to use the results of Tracy and Widom from '
Airy kernel and Painlevé II" as a starting point of our analysis.

We need an expansion of the kernel oy > with respect to N in terms of
known quantities.

Making use of the following expansion,

if we set €= (4n+2a+2¢)2 + 2+, a>—1,with X and ¢

23 n6

bounded. As n — oo,

1

e 21(e2) = (-2 {Ai(X)+(C1 AT (X)n™5+

_ 2 2 .
[2 1064567 =50y pix) + X zAi’(X)} it
10- 23 2023
5 — 15ca+2c3 —15¢2 —56c -6 c—1 3y 4
{( 50 +=25 X3)Ai(X)+
(e = 1)((c = Eéc —3(2+50)) XAi’(X)} 4 O(n—‘%)Ai(X)}
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Unitary Case contd

We find that for .
x = (2An+cc))2+2"2n X and y=(2(n+cc))?+2"2nsY
with X, Y and c¢g bounded,

Ka(x, ) dx = { Kai(X, ¥) = coAIX)AI(Y)n~ 4

% (X + Y)AT(X)AL(Y) — (X2 + XY + Y2)Ai(X)Ai(Y)+
#?;H(Ay(x)m(v)+Ai(X)Ai’(v)) it 4 O(mYE(X. Y)} ix

()
The error term, E(X, Y), is the kernel of an integral operator on L?(J)
which is trace class for any Borel subset J of the reals that is bounded
away from minus infinity.
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Unitary Case contd

For x = 4(n+ ;) + 20 +2(2n)3 X and y = 4(n+ c;) + 2a +2(2n)3 Y
with X, Y and ¢; bounded,

K (x,y) dx = {KAi(X, Y) — 23 Ai(X)Ai(Y)n 3+

Wl

2

0 (X2 4+ XY + YD)AI(X)AI(Y) — (X + V)AL (XA (Y)—
(10¢2 — 1)(Ai(X)Ai (Y) + Ai/(X)Ai(Y))] n~5+0(nY)F(X, v) b dx.

(6)
The error term F(X, Y) is the kernel of an integral operator on L2(J)

which is trace class for any Borel subset J of the reals which is bounded
away from minus infinity.
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Justification

The relation between the Hermite and Laguerre polynomials

—1 1
Han(x) = (=1)"22"nL,, 2 (x?), Hony1(x) = (—1)"22" 1 nlxL 2 (x?)

suggest the following change of variables
x = & for the determination of ,.
and x = £2 for the determination of the ¢,
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Unitary Case contd

We get:

(2(n+cg))2 +2"2n"5s, for GUE, ;
for t = (7)
4(n+c)+2a+2(2n)is for LUE,

as n — oo

FO3H(t) = Fa(s){1+aSt yuo(s) n™ 3+ b5 ESE H(s)n =3} +0(n7Y) (8)

€G,1,2 €G,1,2

uniformly in s.
If in addition,

1
2+t = T then Egﬂ(s) = ECLL’Q(S) = E. »(s), and

Fost(t) = Fa(s){1+ a3 5 uo(s) ™3 + b5 Eco(s) n™3} + O(n7Y). (9)
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Orthogonal and Symplectic cases

For the orthogonal and Symplectic Matrix Ensembles, we need an
expansion of

1 1
(1-%)(1- E:Rl) — E(q‘E —c,)P1 for the orthogonal case, and (10)

1 1
(1-w)(1+ EIRL;) + §q€994 for the symplectic case. (11)
Where

Ry ::/ R(x, t)dx, P ::/ P(x)dx, Q 1:/ Q(x)dx

—00 —

and

Ry = / T C(R(x, t)dx, Py = /

— 0o —00

oo o0

ee(x)P(x)dx, Qq ::/ ee(x)Q(x)dx

— 00

All but e¢(x) are functions of n.
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THANKS
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