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Introduction

We begin with two formulas.

The first formula, first proved by Andréief in 1883, says

1

N !

∫
· · ·

∫
det(fj(xk)) det(gj(xk))dx1 · · · dxN

= det
(∫

fj(x)gk(x)dx
)
j,k=1,···N

This can be proved using elementary properties of determinants.

The second formula comes from the Circular Unitary Ensemble

(CUE) in Random Matirx Theory (RMT). By CUE we mean the

group of N ×N unitary matrices with probability measure being

normalized Haar measure.
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The Haar measure induces a probability distribution on the space

of eigenangles (θ1, . . . , θN) whose density is given by

1

N !

∏
j<k

|eiθj − eiθk|2.

Now suppose we have a random variable of the form

N∑
j=1

f(eiθj)

with f real-valued.

This kind of random variable is called a linear statistic and has

been studied extensively for different ensembles of random ma-

trices.
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We know that the Fourier transfom of the probability density

function of the random variable is given by

g(λ) =
1

(2π)NN !

∫ π
−π

. . .
∫ π
−π

e
iλ
∑N
j=1 f(e

iθj)

×
∏
j<k

|eiθj − eiθk|2dθ1 . . . dθN

=
1

(2π)NN !

∫ π
−π

. . .
∫ π
−π

N∏
j=1

eiλf(e
iθj) ∏

j<k

|eiθj − eiθk|2dθ1 . . . dθN
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We notice∏
j<k

|eiθj − eiθk|2 =
∏
j<k

(eiθj − eiθk)((e−iθj − e−iθk)

=
∏
j<k

(eiθj − eiθk)
∏
j<k

(e−iθj − e−iθk).

The product ∏
j<k

(eiθj − eiθk)

is a Vandermonde determinant

det((eiθk)j−1)Nj,k=1

as is ∏
j<k

(e−iθj − e−iθk) = det((e−iθk)j−1)Nj,k=1.
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Thus our formula for g(λ) becomes

1

(2π)NN !

∫ π
−π

. . .
∫ π
−π

N∏
j=1

eiλf(e
iθj

×det((eiθk)j−1) det((e−iθk)j−1)dθ1 . . . dθN .

We can incorporate a factor of the form eiλf(e
iθj) into a column

or row of either determinant in the last integral

to obtain

1

(2π)NN !

∫ π
−π

. . .
∫ π
−π

det((eiθk)j−1) det((e−iθk)j−1eiλf(e
iθk))dθ1 . . . dθN .
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We apply Andréief’s formula

1

N !

∫
· · ·

∫
det(fj(xk)) det(gj(xk))dx1 · · · dxN

= det
(∫

fj(x)gk(x)dx
)
j,k=1,···N

to find

g(λ) = det
(

1

2π

∫ π
−π

eiλf(θ)eikθe−ijθdθ
)N−1

k,j=0

or

g(λ) = det
(

1

2π

∫ π
−π

eiλf(θ)ei(k−j)θdθ
)N−1

k,j=0
.
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In other words, the Fourier transform (or characteristic function)

of the density function of a linear statistic for CUE is a Toeplitz

determinant, that is, a determinant of a matrix whose k, j entry

depends only on the difference of k and j. Much is known about

the asymptotic expansion of such a determinant.

In what follows subscripts denote Fourier coefficients.

The strong Szegö limit theorem states that if the symbol φ de-

fined on the unit circle has a sufficiently well-behaved logarithm

then the determinant of the Toeplitz matrix

TN(φ) = (φj−k)j,k=0,···,N−1

has the asymptotic behavior

DN(φ) = detTN(φ) ∼ G(φ)N E(φ) as N →∞
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where

G(φ) = e(logφ)0

E(φ) = exp

 ∞∑
k=1

k (logφ)k (logφ)−k

 .
To obtain asymptotic information about the linear statistic we
apply the Strong Szegö Limit Theorem. This shows

g(λ) ∼ G(φ)NE(φ), φ(eiθ) = eiλf(e
iθ)

where

G(φ)N = exp
(
iλ
N

2π

∫ π
−π

f(eiθ)dθ
)

and

E(φ) = exp

−λ2
∞∑
k=1

kfkf−k

 .
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We see that we can interpret the last formula as saying that

asymptotically as N →∞: For a smooth function f the distribu-

tion of

SN −Nµ

where

SN =
N∑
j=1

f(eiθj),

and

µ =
1

2π

∫ π
−π

f(eiθ)dθ

converges weakly to a Gaussian distribution with mean zero and

variance given by

σ2 =
∞∑
1

kfkf−k =
∞∑
1

k|fk|2

(The last equality holds since f is real-valued.)
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For functions f that are discontinuous, we generally are not able

to apply the Strong Szegö Limit Theorem. However, there are

some interesting linear statistics that are important in RMT that

correspond to singular symbols. For example, consider

f(eiθ) = χI(e
iθ) =

{
1 if eiθ ∈ I
0 otherwise

This random variable counts the number of eigenvalues in an arc

I on the circle.
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In 1968, Fisher and Hartwig stated a conjecture about a certain

class of Toeplitz matrices with singular symbols. If

φα,β(e
iθ) = (2− 2cos θ)(α+β)/2 ei(θ−π)(α−β)/2

for 0 < θ < 2π then their symbols had the form

ψ(eiθ) = ϕ(eiθ)
R∏
j=1

φαj,βj(e
i(θ−θj))

where ϕ satisfies the assumption of Szegö’s theorem and θ1, · · · , θR
are distinct points on the unit circle.

They conjectured that for some range of the parameters the

asymptotics had the form

det TN(ψ) ∼ G(ψ)N N
∑
αjβj E(ϕ, αj, βj, θj)

where E(ϕ, αj, βj, θj) is a constant (whose value they did not

conjecture).
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The corresponding symbol for the Toeplitz determinant repre-

senting the Fourier transform of the density for the linear statis-

tic corresponding to counting the number of eigenvalues in an

interval is φ(eiθ) = eiλχI .

This is a Fisher-Hartwig symbol.

To compute the correct α, β parameters, we note this function

only has two jump discontinuities so αj = −βj, j = 1,2. To com-

pute the β parameters notice that for our standard factor φβ,−β

β =
1

2πi
log

(
φ(1−)

φ(1+)

)
.

13



For

φ(eiθ) = eiλχI

with I equal to the arc from e−iγ to eiγ we have two jumps with

β1 =
1

2πi
log

(
1

eiλ

)
= −λ/2π

at the point e−iγ and

β2 =
1

2πi
log

(
eiλ
)
= λ/2π

at the point eiγ. It is straight forward to check that

eiλχI = eiλγ/πφ−λ/2π,λ/2π,γ φλ/2π,−λ/2π,−γ.

If we apply the Fisher-Hartwig results directly, we have that

DN(φ) ∼ e
iλNγ
π N

− λ2

2π2(2− 2cos 2γ)
λ2

4π2G

(
1−

λ

2π

)
G

(
1 +

λ

2π

)
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In the above G(1 + z) is the Barnes G-function satisfying G(1 +

z) = Γ(z)G(z).

This does not have the nice Gaussian form as before. Notice,

though,

N
− λ2

2π2 = e
− λ2

2π2
logN

so that σ2 is on the order of (1/2π2) logN.

Thus if we “re-scale” our random variable in a fairly natural way

to be of the form

1√
logN
2π2

N∑
j=1

(χI(e
iθj)− γ/π)

then g(λ) to tends to e−λ
2
.

15



Sufficient uniformity in the estimates used to prove the Fisher-

Hartwig conjecture in the case of jump discontinuities is re-

quired for this result. This holds in a certain range of λ, say

for |λ/
√

logN
2π2 | ≤ c < 1/2. This can be checked by a careful anal-

ysis of the estimates and convergence tools used in proving the

conjecture.
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Another Application of Fisher-Hartwig

Define

Z = det(I − U) =
N∏
j=1

(1− ei(θj)

This is the characteristic polynomial of a random unitary matrix
evaluated at the point one.

Let us also define

X(θ) = ReZ(θ), Y (θ) = ImZ(θ),

and φN(s, t) =

1

(2π)NN !

∫ π
−π

. . .
∫ π
−π

eisX+itY
∏
j<k

|eiθj − eiθk|2dθ1 . . . dθN
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One can show using the same identity of Andréief that this again

a Toeplitz determinant with a Fisher-Hartwig symbol and with

one singularity. The α, β parameters turn out to satisfy

α+ β = is α− β = t

Rescaling by
√

logN/4 we obtain that φN(s, t) converges point-

wise to

e−s
2−t2
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Other Ensembles

Much of what has been done here can be repeated for other

ensembles of random matrices.

It turns out for the Gaussian Unitary Ensemble, for the study of

linear statistics it is necessary to consider a finite Wiener-Hopf

operator, Wα(φ), defined on L2(0, α) by

PαF−1MφFPα

where Pα is multiplication by the characteristic function of (0, α),

and F is the Fourier transform. For linear statistics the important

quantity is

det(I +Wα(φ))

where φ = eiλf − 1. (The above determinant is well-defined for

sufficiently nice φ.)
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The analogue of the Strong Szegö Limit Theorem says that if

φ = eb − 1 then as α→∞

det(I +Wα(φ)) ∼

exp
(
α

2π

∫ ∞
−∞

b(x)dx+
∫ ∞
0

xb̂(x)̂b(−x)dx
)
,

where b̂(x) is the Fourier transform of b. This formula again

implies that for smooth f the linear statistics are asymptotically

Gaussian. Analogues of this theorem have also recently been

proved for Fisher-Hartwig type symbols.

20



Laguerre Ensembles and the Airy Operator

In RMT Laguerre ensembles are defined on the space of positive
Hermitian matrices and for these ensembles, the study of linear
statistics lead to the study of Bessel operators Bα(φ) defined on
L2(0, α) by

PαHνMφHνPα
where Hν is the Hankel transform of order ν given by

Hν(f)(x) =
∫ ∞
0

√
tx Jν(tx)f(t) dt,

and Jν is the Bessel function of order ν. If φ = eb − 1, then

det(I +Bα(φ)) ∼

exp
(
α

2π

∫ ∞
−∞

b(x)dx−
ν

2
+

1

2

∫ ∞
0

x(̂b(x))2dx
)
.

Some results are known in this case for singular symbols as well,
but only in the case of ν = ±1

2.
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If we scale in GUE ensemble on the edge of the spectrum, linear

statistics problems reduce to the study of the Airy operators,

integral operators on L2(0, α) with kernel

Aα(f)(x, y) = f(x/α)
∫ ∞
0

A(x+ z)A(z + y)dz

where A(x) is the Airy function. (This operator also has an

equivalent definition in terms of multiplication and an “Airy”

transform.) The asymptotic formula reads

det(I +Aα(f)) ∼ exp
(
c1α

3/2 + c2
)
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where

c1 =
1

π

∫ ∞
0

√
x log(1 + f(−x)) dx

and

c2 =
1

2

∫ ∞
0

xG(x)2dx

G(x) =
1

2π

∫ ∞
−∞

eixy log(1 + f(−y2))dy.

Results for discontinuous symbols are not yet known in the Airy

case.
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In all of the above cases, CUE, GUE, Laguerre, and Airy there

is always a Szegö type limit theorem for a particular class of

operators which implies that after scaling, linear statistics have

a Gaussian or normal distribution in the limit, at least for smooth

symbols. Hence there seems to exist a universality or central limit

theorem for such quantities.
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