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Generalised aberration for space filling designs

Abstract

The aberration of a design measures its capability to identify
models of a lower (weighted) degree. In a precise algebraic sense,
this measure is related to the spread of the design points, and
although it is defined for polynomial models, it is not restricted to
them. We present recent work and aberration results for latin
hypercube designs and Sobol sequences.
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Algebraic design of experiments (Pistone and Wynn, 1996)

e Design D, n points, d factors
e Study the D through the design ideal I(D) C R|z]

e The support for a model is given by those monomials not
divisible by the Ieading terms of the Grobner basis G C (D)

Design D °® T.T] > 22
Model = {1, 331,562,331332,332}

T_{:U1+2:1:1:U2+:C2 T — xz,x2 L9, 11T — 0102 — L5+ 22}

e Hierarchical polynomial model: it belongs to Cy ,,
e Saturated regression model = exact polynomial interpolator
e Link with aliasing/confounding f(x) = g(x),x € D
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The fan of a design

e As we scan over all possible term orders, we obtain the
algebraic fan of D (Caboara, 1997; Maruri, 2007)

e Not all identifiable hierarchical models belong to the algebraic
fan,ie. ) CAC S CCyy

T2

D °
%” A={: . L, S\A={:..}

e The models in A correspond to the vertexes of the state
polytope S(I) (Bayer, 1988), e.g. we add up the exponent
vectors for L = {1, xq, :cg,xlxg,x%}, ar =Y. o =(2,4).

S(I)=conv(ay : L € A) +Ri
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Linear aberration

e Taking the motivation from the concept of aberration, we want
to fill out lower degrees before higher:

6(L,c) =Y ciap, = (c,ag),c>0,c#0
Theorem: Any algebraic model minimises some ¢(L, ¢).

Proof. Use LP arguments for the lower boundary of S(17).

e Generic designs minimise ¢(L, c) over Cy,, and all vectors c.

e For generic designs, algebraic models are corner cut models
(Onn, 1999)

O O O

Corner cut model . . {1, 21,29, x129} is not corner cut
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Linear aberration and algebraic models

e The state polytope summarises information about linear
aberration, i.e. its vertexes correspond to models that minimise
¢(L, c) over the set of identifiable hierarchical models S.

e The vertexes of S(I) correspond to algebraic models A.

e The (minimum) aberration of designs can be compared through
their state polytopes.

e However, there may be non-algebraic models on the lower
boundary (and thus minimising ¢(L, ¢) for some ¢) or in the
interior of S([I).
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Examples 1

Central composite design (CCD, Box, 1957) with d =2, n =9
and axial distance = /2

(13, 5] >
\\ /3(1)

O—>

for generic design

Algebraic ={1, z1, x%, x?, xil, X9, T1L9, x%xg, x%} and its conjugate

SAMSI.tex 7 April 17, 2007



Examples 2

Consider D = {(0,0),(1,1),(2,2)(3,4), (5,7), (11,13), (e, B) },
with (o, ) ~ (1.82997,1.82448) (Onn, 1999)

L2

T

D P

GeneriC design

= The set of algebraic models can be larger in size than the set of
corner cut models. However, corner cut models are always of
lowest possible degree over all vectors ¢ # 0.
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Latin hypercube designs (McKay, 1979)

Construction of Latin hypercube (LH) designs

e Divide the range of each variable into n equal segments
e Choose a value in each segment (uniformly)

e Permute each coordinate randomly

LH covers each coordinate evenly. Lower dimensional projections
are also LH.

e Mixing LH with other criteria: Maximin, alphabetic optimality
(e.g. D-optimality).

Theorem. The random LHS is generic with probability one.
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Minimal aberration and LH

Theorem. For k,n > 2, there always exist a generic non-random
LHS design (proof not complete yet)
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Almost generic non-random LH designs (d = 2,n = 6, 10)

= |dentification of a model of total degree s is closely related to
d—I—S)

genericity for design size n = ( <
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LH rules

e There clearly exist a few bad cases of LH designs, e.g. when the
points of the LH are along a line (e.g. next slide).

e However, by selecting a non-random latin hypercube (at
random), the probability of it being generic increases rapidly
with n.

e A necessary condition for LH to exist is given by the Shape
Lemma (Cox, 2005). We note that the polynomials forming the
GBasis for the design ideal must be of the highest possible order
(a specialization of the Shape Lemma).
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Comparison of space filling designs: Sobol, maximin LH and
worst case LH for d =2, n = 10

State polyhedrons for maximin LHS design (D7), a Sobol sequence
(Ds) and a “worst case” LHS (Ds).

SAMSI tex 13 April 17, 2007




Future work

e Using other kernels
e Genericity in kriging: ?
e Link between different (concepts) criteria
o Maximin (special criteria)
o Discrepancy (number theoretic)
o Genericity (algebraic)
o Optimality (statistical)

e Estimating the covariance kernel
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Model Based Optimal Design (Non-Sequential Approach)

(MUCM) PhD student: Noha Youssef
Supervisor: Henry Wynn

Department of Statistics, London School of Economics

MUCM-SAMSI joint meeting April 2007
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Maximum entropy sampling (MES: Wynn, 1987)

e Partition: Yg = [Y : Yo
® Ent(Ys) — Ent(Ys) + EYSEnt<YS\5‘YS>
e Since Ent(Yy) is fixed, an experiment that maximises the

entropy of the (marginal/prior) distribution of Y will minimise
the preposterior entropy

e In the Gaussian case MES: maximise ¢ where ¢ = log |cov(Y)|
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Branch and Bound for MES (Ko, 1995)

e Branch and Bound (B&B) algorithm

o The algorithm searches over a finite set of candidate points in
a grid.
o At every step, a branch is done and bounds for ¢ are

computed: LB < ¢ < UB. Then based on the bounds

(LB,UB) computed, one of the following decisions is taken:
add a problem to the live set of problems, kill a problem or
terminate the algorithm.

e Future work

o Extending the use of B&B for different kernels
o Trying to use the B&B in sequential construction of designs
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Karhunen-Loeve Expansion and its Applications

PhD Candidate: Limin Wang
Supervisor: Henry Wynn

Department of Statistics, London School of Economics

MUCM-SAMSI joint meeting April 2007
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Karhunen-Loeve (K-L) Expansion

e Karhunen-Loeve (K-L) Expansion, Mercer's Theorem and
Reproducing Kernel Hilbert Space (Karhunen, 1947)

e Fredholm Equation

/ K (s, )6 (s)ds = () (1)

e Examples for K-L Expansion: Brownian Motion, Brownian
Bridge, O-U process, Integrated Brownian Motion, &c

e Numerical Methods: Integration based method and Galerkin
method
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K-L Expansion: Applications

e Maximum Entropy Sampling (MES, Wynn 1987) for
Continuous Gaussian Processes

e D-Optimal Design and MES

Numerical Approximation: using Fourier bases and Haar
wavelets

e Conditional K-L expansions
e Conditional Mean Square Error for finite expansions
e Kriging for finite expansions

e Multivariate K-L expansions
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