CLIMATE MODELS

Montserrat Fuentes Statistics Department North Carolina State University

Questions in climate modeling

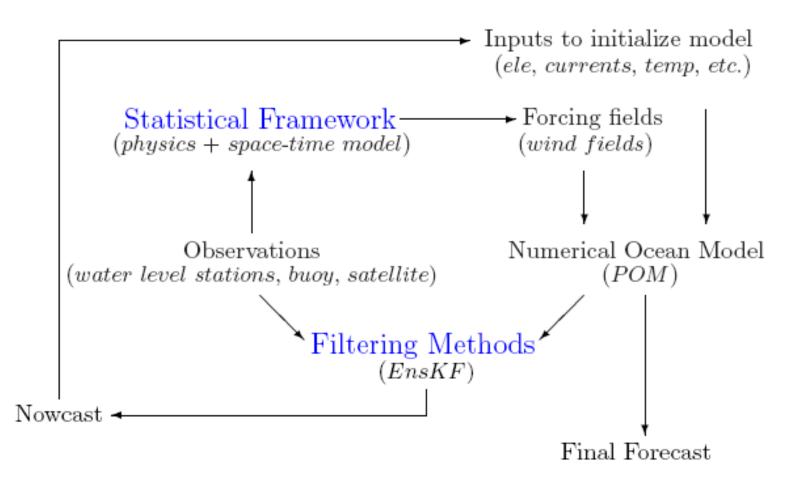
Deterministic vs. Stochastic climate modeling
Choosing a climate model
Fusing data and climate models
Stochastic parameterization of climate models
Characterization of uncertainty in climate models
Computational considerations (run in real time)

Deterministic versus Stochastic?

- Most climate models are large dynamical deterministic systems involving a million variables on big computers
- Climate models could be stochastic:
 - Using physical knowledge
 - Making sure results make physical sense (conservation of mass, momentum...)
 - \geq Need to be computational feasible

What climate model to use?

- There are different climate models. How to decide which one to use?
- Bayesian modeling averaging. Does the results make physical sense?
- Ensemble modeling.
- Need for more model evaluation (taking into account uncertainty in data).

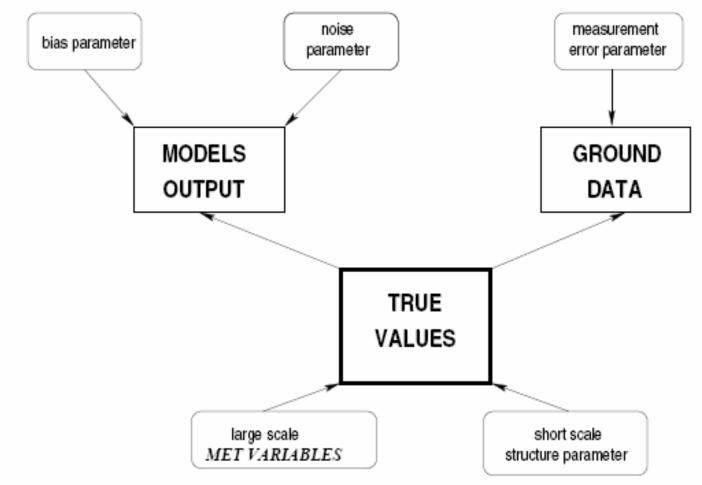

Fusing Data and Models

- Data can help to correct some of the model errors.
- Data assimilation (fusing data and models) approaches for climate models.

Fusing data and models

Foley, Fuentes et al. (2005, 2006)

Scientific Framework



Fusing Data and Models (cont.)

Model output could be treated as another source of data.

Fusing Data and Models (cont.)

Statistical framework (Fuentes and Raftery, 2005)

Fusing Data and Models (cont.)

- Hierarchical (Bayesian) frameworks ideal to combine disparate data and models
 - Bayesian methods can be computational intensive (infeasible??)

Uncertainty in Climate Models

Sources of uncertainty in climate models:

- Boundary and Initial conditions
- Model parameterization
- Mathematical approximations
- Simplified or neglected physical processes
- Statistical tools can help to characterize the different sources of uncertainty

Stochastic parameterization

- A Bayesian framework is a natural choice.
- Having a (prior) distribution for some of the parameters, using physical and expert knowledge.

Computational Considerations

- Statistical approaches are available to handle the issues previously discussed.
- The feasibility of the implementation of these statistical approaches is the main challenge
- Bayesian techniques can be expensive, but they can be run in parallel.

Interdisciplinary research

- For Climate Modeling we need:
 - To use physical knowledge
 - To characterize uncertainty
 - To provide efficient computational tools
- This can only be done with interdisciplinary teams (atmospheric scientists, mathematicians, statisticians, computer scientists)

Recommendations

 Climate deterministic models need characterization of uncertainty

- Data can help to correct model errors
- Computational feasibility can be a barrier for the use of sophisticated statistical frameworks

 Interdisciplinary effort. SAMSI provides a perfect umbrella for this research.