Experiment Designs for Model Calibration

Derek Bingham, Simon Fraser University C. Shane Reese, Brigham Young University Wilson Lu, Acadia University Pritam Ranjan, Simon Fraser University

Outline

- Background: Computer Experiments
- Motivating Example
- Proposed Approach
- Wrap-up

Computer Experiments

- Rapid growth in computer power has made it possible to study costly physical phenomena
- To understand how inputs to the computer code impact the system, scientists adjust the inputs observe the response
- That is, they run a *computer experiment*

Computer Experiments

- Computer code exists to model the physical system
- The computer codes frequently:
 - require solutions to PDEs
 - use finite element analyses
 - have high dimensional inputs
 - have outputs which are complex functions of the input factors
 - require a large amounts of computing time
 - have features from some of the above

Motivating Example

- Coating of a chocolate bar (i.e., chocolate)
- Field Data: 15 runs
 - Experiment factor (*X*) related to fluid temperature
 - Response Variable (Y) is the thermodynamic operating point
- Computer model: 10 runs $Y = 37 + 2 * \exp(\theta * X)$
- Initial Design: Random LHS Design.

Motivating Example

- Have both field data and computer model data
- Both sources contain information about the physical process
- Combine both sources of data to build a predictive model
- Use model proposed by Kennedy and OHagan (2001)
- Experiment Goal: To perform new trials (computer or field) to improve prediction of physical process

• Have two sources of data - field and computer data

•
$$y_{f_i} = \eta(x_i, \theta) + \delta(x_i) + \varepsilon_i, \quad i = 1, \cdots, n$$

•
$$y_{c_j} = \eta(x_j^*, t_j), \quad j = 1, \cdots, m$$

• Use a **Ga**ussian **S**patial **P**rocess (GASP) model for both the computer code and the discrepancy

Goals and Criteria

- Goal: Improved prediction for field experiments
- Criterion: Integrated Mean Square Error
- Goal: Make computer model better surrogate by correcting appropriately through more precise estimation of θ
- Criterion: Gain in Shannon Information, D-Optimality

1. Field observations:

$$y_f = (y_{f_1}, \cdots, y_{f_n})'$$

2. Computer code output:

$$y_c = (y_{c_1}, \cdots, y_{c_m})'$$

3. Full set of data:

$$d^{T} = (y_{c}^{T}, y_{f}^{T}) = (y_{c_{1}}, \cdots, y_{c_{m}}, y_{f_{1}}, \cdots, y_{f_{n}})$$

Model and Parameter Structure

1. Model:

(a)
$$\eta(\cdot, \cdot) \sim N(\mu_{\eta}, c_1\{(\cdot, \cdot), (\cdot, \cdot)\})$$
 with
 $c_1((x, t), (x', t')) = \sigma_{\eta}^2 \cdot exp\left\{-\sum_{k=1}^p \beta_k (x_k - x_k')^2 - \sum_{k'=1}^q \beta_{p+k'} (t_k - t_k')^2\right\}$

(b) $\delta(\cdot) \sim N(\mu_{\delta}, c_2(\cdot, \cdot))$ with

$$c_2(x,x') = \sigma_{\delta}^2 \cdot exp\left\{-\sum_{k=1}^p \gamma_k (x_k - x'_k)^2\right\}$$

- (c) $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$.
- 2. Parameters:
 - (a) $\Omega = \{\mu, \theta, \phi, \sigma_{\varepsilon}^2\}$ (b) $\mu = (\mu_{\eta}, \mu_{\delta})^T$ (c) $\phi = \{\sigma_{\eta}^2, \sigma_{\delta}^2, \beta, \gamma\}$

More Formulae

• Full set of data:

$$d^{T} = (y_{c}^{T}, y_{f}^{T}) = (y_{c_{1}}, \cdots, y_{c_{m}}, y_{f_{1}}, \cdots, y_{f_{n}})$$

- Variance of response:
- In summary,

$$d|\Omega \sim N(H\mu, V_d(\theta))$$

where

$$H = \begin{pmatrix} \mathbf{1}_m & \mathbf{0} \\ \mathbf{1}_n & \mathbf{1}_n \end{pmatrix},$$

$$V_d(\theta) = \begin{pmatrix} V_1(D_1) & C_1(D_1, D_2(\theta)) \\ C_1(D_1, D_2(\theta)) & V_1(D_2(\theta)) + V_2(D_2) + \sigma_{\varepsilon}^2 I_n \end{pmatrix}$$

• Predicted field response (Kennedy and O'Hagan, 2001):

$$\hat{y}_f(x_0) = E\{z(x_0)|\phi = \hat{\phi}, d\} = \int E\{z(x_0)|\theta, \hat{\phi}, d\}\pi(\theta|\hat{\phi}, d)d\theta$$

• MSE of prediction:

$$MSE[\hat{y}_{f}(x_{0}|\theta)] = E[\hat{y}_{f}(x_{0}|\theta) - y_{f}(x_{0}|\theta)]^{2} = \sigma_{\eta}^{2} + \sigma_{\delta}^{2} + \sigma_{\epsilon}^{2} + + C_{f}(x_{0},\theta)^{T} V_{d}(\theta) C_{f}(x_{0},\theta) - 2C_{f}(x_{0},\theta)^{T} t_{f}(x_{0},\theta).$$

and

$$MSE[\hat{y}_f(x_0)] = \int MSE[\hat{y}_f(x_0|\Omega)]\pi(\Omega|d)d\Omega$$

• Integrated MSE of prediction over design space $\mathcal{D} \subset R^p$:

IMSE(
$$\theta$$
) = $\int_{\mathcal{D}} MSE[\hat{y}_f(x_0|\Omega)]dx_0,$

and

$$IMSE = \int IMSE(\Omega)\pi(\Omega|d)d\Omega = \int \int_{\mathcal{D}} MSE[\hat{y}_f(x_0|\Omega)]\pi(\Omega|d)dx_0d\Omega,$$

• Modified IMSE after adding candidate design points:

IMSE
$$(X_{\text{new}}) = \int \int_{\mathcal{D}} \text{MSE}[\hat{y}_f(x_0|\Omega, X_{\text{new}})]\pi(\Omega|d)dx_0d\Omega,$$

where $\hat{y}_f(x_0|\Omega, X_{\text{new}})$ and $\text{MSE}[\hat{y}_f(x_0|\Omega, X_{\text{new}})]$ will be calculated based on the same parameter estimates but with the augmented D_1 and D_2 .

Design Searching Algorithm (Exchange Algorithm)

- 1. Randomly generate a set of new design points, X_{new} , to form the initial augmented design;
- 2. Determine the worst design point $x_{i_0} \in X_{\text{new}}$ at current stage:
 - 1) Exclude one of the design points x_i from X_{new} to form X_{new}^{i-} ;
 - 2) Compute IMSE(X_{new}^{i-}) for each $x_i \in X_{new}$;
 - 3) Decide $x_{i_0} = \arg \min_{X_i \in X_{\text{new}}} \text{IMSE}(X_{\text{new}}^{i-}).$
- 3. Search for a replacement for x_{i_0} :
 - 1) Select x_k from a candidate set X_{can} , presumably a grid of design space, to form $X_k^+ = (X_{new}^{i-}, x_k)$;
 - 2) Computer IMSE(X_k^+) for each $x_k \in X_{can}$;
 - 3) Decide $x_{k_0} = \arg \min_{x_k \in X_{\text{can}}} \text{IMSE}(X_k^+)$ as the current replacement.

- 4. Repeat steps 2 and 3 until some stopping criterion met.
- 5. Restart from step 1 for a number of times.

Simulation Comparisons

- 4 classes of designs
 - 1. Optimal Designs
 - 2. One point Replication
 - 3. Half Replication
 - 4. Full Replication

Optimal IMSE Values for Simulation with Low Noise

Calibration Plots

Calibration Plots

Computer Only Runs Available

- Computer model prefers alignment with field observations
 - 1. Prediction of discrepancy surface $(\delta(\cdot))$
 - 2. Noise estimation
- Note: Field observation prediction still goal.
- Noise appears to have little effect on results.
- Other criteria will yield substantially different results.

Comments

- 1. Question: What is value of replication?
 - Seems that replication is helpful, especially in presence of larger variability
- 2. Question: What is value of alignment of computer and physical trials?
 - Optimal design rarely (never?) aligns the computer and physical trials as a starting design, but efficiency is comparable...may wish to do so

Further research

1. Cost function to account for balance between costs:

 $C = c_1 \cdot m_{\text{new}} + c_2 \cdot n_{\text{new}}.$

With a fixed total cost *C*, the best combination of m_{new} and n_{new} .

2. Combined Physical/Computer Trials...measuring value of computer model.

Conclusions

- Value of replication
- Criteria
- Joint nature of θ and $\delta(\cdot)$.
- Knowledge of computational models is essential to solve joint nature problem....not a black box.

Optmial IMSE Values for Simulation with Medium Noise

