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Goal

Develop a response surface for the model outputs of:

• lift

• drag

• pitch

• side-force

• yaw

• roll

for a variety of flight conditions (inputs):

• speed (Mach number)

• angle of attack (alpha)

• side slip angle (beta)
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Overall Approach

Combine modeling and sequential experimental design.

• Start with an initial small run

• Fit a Bayesian model and estimate predictive uncertainty

• Choose new run locations based on uncertainty

• Attempt to put more effort in “interesting” regions



Gaussian Process Models

Traditional approach to modeling computer experiment output is a

Gaussian Process (GP) (Sacks et al., 1989; Santner et al., 2003).

Z(x) = Xβ + W(x)

Z model outputs

x an arbitrary input value

X model inputs at all currently known data points

β linear trend coefficients

W mean zero spatial process



Spatial Correlation

W has covariance matrix C with elements

C(xj ,xk) = σ2ρ(∆), where ∆ = dist(xj ,xk)

ρ(∆) is a correlation function, often the Matérn class or the power family

applied to Euclidean distance

ρ(∆) = exp
{

−
∆p0

d

}

can scale dimensions differently
can include a nugget effect



Drawbacks

• Scales poorly — matrix inversions are O(n3)

• Strictly stationary — our data aren’t

• Predictive error depends only on aggregate (not nearby) previously

observed responses



Solution: Partitioning

• Use a binary tree structure to recursively partition the space

– Allow multiple splits per variable

• Tree process prior (Chipman et al., 1998)

• Fit a separate GP on each partition

• Fitting of tree structure and GPs is done simultaneously through

MCMC

• Extension of partitioned linear regression model (Chipman et al.,

2002)

• Nonstationarity achieved through partitioning



Tree Example

How a tree T recursively partitions the input space:

X[:, u2] < s2

X[:, u1] < s1

T : diagram

{u2, s2}

{u1, s1}

X[:, u1] ≥ s1

X[:, u2] ≥ s2

D3 = {X3, Z3}

D2 = {X2, Z2}D1 = {X1, Z1}

D1

D3

u1

D2

s1

s2

T : graphically

u2



Fit with MCMC

Sample from the joint posterior of (T , θ)

(Richardson & Green, 1997; Chipman et al., 2002)

• Average over T with reversible-jump MCMC (RJ-MCMC)

• Tree operations: grow, prune, change, swap, and rotate

Gibbs sampling for all within-partition parameters except the
correlation, which requires Metropolis-Hastings



Motorcycle Accident Data

(Silverman, 1985)
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Partly non-linear, non-stationary, heteroscedastic data



Limiting Linear Models

• Would like to be able to fit this dataset accurately and efficiently

– Fit three distinct regions

– Linear in first and third, non-linear in middle

– Error variability differs by region

• A smooth fitted Gaussian Process can look essentially linear

• Combine with treed partitioning to fit either a full GP or a LLM

in each of several partitions fit to the data

• Allow a region to jump between a smooth GP and a linear model

• Fit all parts of the model (parameters, GP/LLM, partitions)

simultaneously with RJMCMC

• Results in a highly flexible yet computationally tractable

non-stationary semi-parametric model.



Adaptive Sampling

Active Learning / Sequential Design of Experiments

• select future design sites to improve our knowledge (model)

• maximize some measure of utility

– Kullback-Leibler distance between posterior predictive and prior

predictive — equivalent to minimizing predictive variance

– Choose next point as the one which has the largest predictive

variance (MacKay, 1992) (ALM)



Issues

• Standard design approaches assume the model and its parameters are

known

• Standard optimal designs tend to push points to the boundaries

• Searching over continuous space must be done approximately

• Need to select a list of multiple points

• Need to deal with pending data (experiments currently being run)



Iterative Algorithm

• Use MCMC to fit parameters and estimate variances using currently

known data plus fitted values at pending locations

• Create prioritized list of new design points based on predictive

variance

• Incorporate results of new experimental runs

• Clear or prune tree structure and repeat



Adaptive Sampling Demo
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Rocket Booster Example

• 3 inputs, 6 outputs

• Each sample required 5-20 hours computing time

• Non-stationary

• Fit independent treed GP for each response, use standardized average

of predictive variability



Adaptive Sampling on LGBB: Lift
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Adaptive Sampling on LGBB: Lift
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Adaptive Sampling on LGBB: Drag
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Adaptive Sampling on LGBB: Pitch
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Adaptive Sampling on LGBB: Side Force
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Adaptive Sampling on LGBB: Yaw
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Adaptive Sampling on LGBB: Roll
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Adaptive Sampling on LGBB
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tgp R library

Available at

http://www.cran.r-project.org/src/contrib/Descriptions/tgp.html

Or just get within R with

install.packages("tgp")
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