
Granular Avalanche Down an Incline

The risk of volcanic eruption is one that public safety officials throughout the world face
several times each year. The US Geological Survey reports that there are about 50 volcanoes
that erupt every year. In the 1980s, approximately 30,000 people were killed and almost a
half million were forced from their homes because of volcanic activity.

Geophysical mass flows - debris flows, avalanches, landslides - are often initiated by
volcanic activity. These flows can contain O(106 − 107) m3 or more of material. Typically
this material is a mixture of soil and rocks in the centimeter size range, sometimes mixed
with meter-sized boulders. These flows can be O(10) m deep and can run out at speeds of
tens of meters per second, over distances of tens of kilometers. And often these flows contain
a significant quantity of interstitial fluid. Here we describe a model of these flows.

Consequent to an eruption can be hazards including passive gas emission or the slow
efflux of lava, or violent explosions accompanied by stratospheric plumes and pyroclastic
flows of red-hot ash, rock and gas that race along the surface of the mountain. These flows
can melt snow, creating a muddy mixture of ash, rock and water. Other potential hazardous
activity includes giant debris flows, coarse block and ask flows, and avalanches.

Absent volcanic activity, intense rainfall on hillsides that are devoid of vegetation can
cause massive mudslides. The 1998 mudflow at Casita Volcano in Nicaragua caused thou-
sands of deaths. In the San Bernardino area of California during December 2003, hills that
were scoarched by summertime wildfires gave way in massive mudslide destroying homes and
businesses.

Exploiting the small depth of typical mass flows relative to their length, Savage and
Hutter developed a “thin layer” model for granular flows down inclines (Savage and Hutter,
JFM (1989)).

1 Modeling Flows

A thin layer of material is assumed to flow over a smooth basal surface; as we will see,
motion normal to the bed can be neglected, and we ignore any erosion of the basal surface.
By depth-averaging the mass and momentum balance laws, one derives a system of PDEs for
the flow depth and the flow velocities. We consider the equations of motion in three space
dimensions, called x, y and z, plus time; depth averaging will remove the z dimension, the
direction normal to the basal surface, yielding a system in x, y and t.

Consider then a mass of solid material of constant specific density ρs, flowing on a surface
described by Fb(x) = z − b(x, y) = 0. Write v for the velocities of the material. When
writing equations in component form, we use numerical superscripts for velocities in specific
directions. Mass conservation may be written as

dtρs +∇ · (ρsv) = 0 (1)

The momentum equations takes the form

ρs(∂tv + (v · ∇)v) = −∇ · T s + ρsg (2)
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To proceed, scale the independent and dependent variables, z by H, x, y by L, stresses
by ρsgH and time as t2 = L/g. After clearing the coefficients, the continuity equations is
unchanged: ∂xv

1 + ∂yv
2 + ∂zv

3 = 0. However in the momentum equations, several terms are
multiplied by ε = H/L which is assumed small:

∂tv
1 + v1∂xv

1 + v2∂yv
1 + v3∂zv

1 = −(ε∂xT
s11 + ε∂yT

s21 + ∂zT
s31) + gx

∂tv
2 + v1∂xv

2 + v2∂yv
2 + v3∂zv

2 = −(ε∂xT
s12 + ε∂yT

s22 + ∂zT
s32) + gy

ε(∂tv
3 + v1∂xv

3 + v2∂yv
3 + v3∂zv

3) = −(ε∂xT
s13 + ε∂yT

s23 + ∂zT
s33)− gz

We discard all terms multiplied by ε in the z-momentum equation, but retain the ε terms
in the x- and y-equations. The justification for retaining this terms can be made a posteriori
by examining the scale of the entire term εT s. In particular, dropping these terms results in
a trivial model; see the discussion in Savage-Hutter.

Only two terms remain in the z-momentum equation

∂zT
s33 = −gz

so the normal solids pressure is lithostatic -

T s33(z) = gz(h− z) . (3)

We now several assumptions to simplify the modeling. From the scaled equations, it is
clear we can ignore all motion normal to the basal surface, so v3 = 0 in the bulk of the flow.
The assumption of Mohr-Coulomb plasticity is far too complex to use in a depth-averaged
model. An assumption is made whereby all shear and longitudinal stresses are proportional
to the normal stress; similar assumptions appear in soil mechanics and have their roots in
the classic work of Terzaghi and Rankine. This issue will be detailed below.

As for boundary conditions, the upper surface of the flowing mass at Fh(x, t) = z −
h(x, y, t) = 0 is assumed to be a material surface and stress free. That is, the surface is
defined by the motion of the material: ∂th + vx∂xh + vy∂yh = vz. At the base of the mass,
material is assumed to flow tangent to Fb = 0, and to satisfy a sliding friction law. This
friction relation specifies that the shear traction S and the normal stress N are proportional:
S|Fb

= −sgn(v) N |Fb
tan(φbed), where φbed is the basal friction angle and the −sgn(v) specifies

that the shear force opposes motion.

2 Depth Averaging

Integrate the incompressibility equation through the layer to find∫ h

b
(∂xv

1 + ∂yv
2 + ∂zv

3) dz = 0 .

The Leibnitz formula allows the interchange of differentiation and integration. Then apply
the kinematic conditions on the upper and lower surfaces to find

∂tĥ + ∂x

(
ĥv1

)
+ ∂y

(
ĥv2

)
= 0 . (4)
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The depth-averaged velocities are defined by ĥv1 =
∫ h
b v1 dz, and ĥv2 =

∫ h
b v2 dz, and ĥ =

h− b.
Now consider the equation of the motion. Notice that the depth averaged lithostatic

stress is given by ∫ h

b
∂zT

s33 dz = −
∫ h

b
gz = − ĥgz

The left-hand side of the x-momentum equation is

LHS = ∂tv
1 + v1∂xv

1 + v2∂yv
1 + v3∂zv

1 .

Use the incompressibility equation, depth average, and use boundary conditions to find∫ h

b
LHS dz = ∂t

∫ h

b
v1 dz + ∂x

∫ h

b
v1v1 dz + ∂y

∫ h

b
v1v2 dz + ∂z

∫ h

b
v1v3 dz (5)

We would like to write these terms as products of the average velocity, but can’t. We may
have, for example,

∫ h
b v1v1 dz = cĥ(v1)(v1) for some c, where c = 1 for plug flow and c = 6/5

for parabolic flow.
As for the right hand side:∫ h

b
RHS dz = −

∫ h

b
(ε∂xT

s11 + ε∂yT
s12 + ∂zT

s13) dz +
∫ h

b
gx dz (6)

In order to proceed, several assumptions are made: The earth pressure relations for the
solid phase is employed. To this end, basal shear stresses are assumed to be proportional to
the normal stress:

T s∗3 = − v∗

||v||
tan(φbed)T

s33 = α∗3T
s33 ,

where ∗ can be either 1 or 2 (i.e., x or y), and the velocity ratio determines the force opposes
motion in the ∗-direction, to the extend that force is mobilized in that direction. Likewise
the diagonal stresses are taken to be proportional to the normal solid stress

T s∗∗ = kapT
s33 = α∗∗T

s33 ,

where the same index x or y is used in both ∗s. Finally, the T 12 shear stress is determined
by a Coulomb relation

T s12 = −sgn(∂yv
1) sin(φint)kapT

s33 = α12T
s33

where the sgn function again ensures that friction opposes straining in the (x, y)-plane. The
kap term is called the earth pressure coefficient, and takes on different values in the active
and passive stress states. The active or passive state of stress is developed if an element of
material is elongated or compressed in flow, and the formula for the corresponding states
can be derived from the Mohr diagram

kap = 2
1± [1− cos2 φint(1 + tan2 φbed)]

1/2

cos2 φint

− 1 (7)
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in which the negative square root corresponds to an active state (∂xv
1 + ∂yv

2 > 0), and the
positive root to the passive state (∂xv

1 + ∂yv
2 < 0).

We find

RHS = −ε
∫ h

b
∂xα11T

s33 dz − ε
∫ h

b
∂yα12T

s33 dz −
∫ h

b
∂zα13T

s33 dz (8)

+
∫ h

b
gx dz = − ε[∂x

∫ h

b
α11T

s33 dz − α11T
s33|z=h∂xh + α11T

s33|z=b∂xb]

− ε[∂y

∫ h

b
α12T

s33 dz − α12T
s33|z=h∂yh + α12T

s33|z=b∂yb]

− α13[T
s33|z=h − T s33|z=b] +

∫ h

b
gx dz .

One must use kinematic and stress condition at the upper surfaces which reads

T · n
∣∣∣z=h(x,y,t) = Txx

∣∣∣z=h(x,y,t) ∂xh + Tyx

∣∣∣z=h(x,y,t) ∂yh− Tzx

∣∣∣z=h(x,y,t) = 0

Now combining terms yields an x-momentum equation:

∂t(ĥv1) + ∂x(ĥv1v1) + ∂y(ĥv1v2) (9)

= − 1

2
ε∂x(α11ĥ

2(−gz))− 1

2
ε∂y(α12ĥ

2(−gz))

+ (−εα11∂xb− εα12∂yb + α13)ĥ(−gz) + ĥgx .

The y-momentum has a similar form, and can be obtained by interchanging x and y and
1 and 2 in the x-equation.

Writing the relations for mass and momentum balance, the governing equations form a
system of hyperbolic balance laws that can be written in matrix form

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= S (10)

This system has a structure similar to the shallow water equations, except for the complex-
ity of the dissipation terms on the right-hand side. The system is strictly hyperbolic and
genuinely nonlinear away from the “vacuum state” h = 0. (Exercise: Show that, for the
equations in 1 space dimension, the characteristic speeds are λ± = v1 ±

√
εα11h.)
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