
2 Pieces of Mathematics

1 Dissipation, Dispersion and Discrete Models

For linear PDEs (1 dimension here), one can look for exponential solutions eλt+ik. Notice
of course if λ is has positive real part, the equation is unstable and possibly ill-posed. For
standard examples of linear equations

Equation Phase relation
∂tu+ ∂xu = 0 λ = −ik
∂tu = ∂x

2u λ = −k2

∂tu = ∂3
xu λ = −ik3

Now consider a standard argument for passing from a discrete collection of blocks joined
by springs to the continuum. Imagine a typical formulation

∂2
t y = ∂x[T (∂xy)] (1)

The usual expansion would read

∂2
t uj =

T (uj+1)− 2T (uj) + T (uj−1)

h2
(2)

where uj = (yj − yj−1)/h, yj is the displacement of the jth particle, and h is the equilibrium
interparticle distance. Expanding the RHS,

∂2
t uj = ∂2

xT (uj) +
h2

12
∂4

xT (uj) + O(h4) (3)

Usually one simply passes to the limit h → 0 and thats it. However if T is nonlinear -
in particular, non-harmonic - the higher order term provides useful information about the
continuum behavior. Set uj = u and assume T is linear. Then one has

λ2 = − k2 +
h2

12
k4 (4)

and the dispersion term leads to ill-posedness. (Note: Considering wave propagation in one
direction only lead to the KdV equation.)
[From Rosenau, Phys Rev D 36 (1987)] A way around the short wave blow-up is to reconsider
(3) and recall the Chapman-Enskog expansion we saw earlier

∂2
t u = L∂2

x[T (u)] (5)

where L = 1 + h2

12
∂2

x +O(h4). This operator can be inverted, and we write

L−1 = 1− h2

12
∂2

x +O(h4)
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Apply to (5) yields

∂2
t u = ∂2

xT (u) +
h2

12
∂2

x∂
2
t T (u) (6)

Now the linearized dispersion relation is λ2 = −k2 − h2

12
k2λ2 or

λ2 =
−k2

1 + h2

12
k2

(7)

Now the high frequency modes asymptote to an imaginary constant, while low frequency
waves behave much as they had earlier, with eigenvalue λ ≈ ±ik.

It is worth returning to a linearized version of the discrete equation (2) again, and look
at the action of the discrete shift operator σuj = uj+1 so σuj = σeλt+ik(j+1)h = eikhuj. In the
equation we have

λ2 =
1

h2
(eikh − 2 + e−ikh) = − 2

h2
sin2(kh) (8)

The usual Taylor expansion of the sin gives the ill-posed result of (4). An expansion by
rational functions leads to (7).

2 Variation of Parameters

[Estep and Neckels, J. Comp. Phys213 (2006)] The second issue we tackle is to investigate
the variation of a parameter on the output of a system of equations. We illustrate with a
finite dimensional example first, then examine an ODE example. The methodology carries
over to PDEs directly.

2.1 A Nonlinear System

So imagine we want to solve
f(x, λ) = b (9)

where x ∈ <N and where λ ∈ <d is a parameter. We asume f is as smooth as we need it to
be. If we think of f as the action of an experiment, we often are not able to monitor all of
f on output, but only a functional of it - perhaps an average, or only one component of the
solution. By the Riesz representation theorem, there is a vector ψ ∈ <N such that < x, ψ >
yields the functional of interest. For example, ψ = 1

N
(1, 1, . . . , 1)T is the average.

What if you could solve (9) easily for some value µ of the parameter, but wanted to know
the solution (or an estimate of it) for nearby values. Let y be the solution of f(y, µ) = b.
Let A = Dxf(y, µ). Then there is a Green’s function φ such that

ATφ = ψ

so
< x, ψ > = < x, ATφ > = < Ax, φ > (10)
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Now compute a Taylor expansion around (y, µ)

f(x, λ) = f(y, µ) +Dxf(y, µ)(x− y) +Dλf(y, µ)(λ− µ) +R (11)

where R is the remainder. Now the f ’s both equal b, so

< Ax, φ > = < Ay, φ > − < Dλf(y, µ)(λ− µ), φ > − < R, φ > (12)

Drop the remainder, we find

< x, ψ > ≈ < y, ψ > − < Dλf(y, µ)(λ− µ), φ > (13)

2.2 Example 1

Consider the system

λ1x
2
1 + x2

2 = 1 (14)

x1 − λ2x2 = 1

For simplicity, choose ψ = (1, 0)T so < x, ψ >= x1, and lets look near µ1 = µ2 = 1 and the
solution y1 = 1, y2 = 0.

Dx =

(
2λ1x1 2x2

1 λ2

)
=

(
2 0
1 1

)
(15)

Dλ =

(
x2

1 0
0 −x2

)
=

(
1 0
0 0

)
(16)

Putting it all together then,

< x, ψ >= x1 ≈ < (1, 0), ψ > − <

(
1 0
0 0

)(
λ1 − 1
λ2 − 1

)
, φ > (17)

2.3 Example 2

Here is a scalar ODE

ẋ(t, λ) = f(x(t, λ), λ1) 0 ≤ t ≤ T (18)

x(0) = λ0

where for simplicity take x ∈ <1, and λ1, λ0 both 1-dimensional also. Here I am thinking of
λ = λ(ω) as a random variable with some distribution. A solution x(t, λ(ω)) is a stochastic
process. We need to make enough assumptions on x so the solution exists for the time of
interest.

Functionals: ψ(s) = δ(s − t) gives the solution at time t; ψ(s) = 1/T is the average of
the solution over [0, T ].
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So the quantity of interest

q(λ(ω)) =
∫ T

0
< x(s, λ(ω)), ψ(s) > ds

We are really trying to get an idea of the distribution of the solution as λ varies.
The Green’s function solves the adjoint problem

− φ̇(t)− AT (t)φ(t) = ψ(t) T ≥ t ≥ 0 (19)

φ(T ) = 0

and of course A(t) = Dxf(y(t), µ1) where y is the solution of the deterministic problem with
reference values (µ0, µ1).

One can show

q(λ) =
∫ T

0
< x, ψ > ds ≈

∫ T

0
< y, ψ > ds+ < λ0−µ0, φ(0) > +

∫ T

0
< Dλ1f(y, µ1)(λ1−µ1), φ(s) > ds

So if our problem is

ẋ(t, λ) = λx(t, λ) 0 ≤ t ≤ T (20)

x(0) = x0

with λ random, and ψ(s) = δ(s− t), then

q(λ) = x(t, λ) ≈ y(t, µ) + (λ− µ)
∫ t

0
eµ(t−s)y(s, µ) ds

The approximation is
y(t, λ) = a(t) + λb(t)

with
a(t) = x0(1− µt)eµt b(t) = x0te

µt

What happens if λ is normally distributed about 0? What is it is the initial data that
varies, at a fixed value of λ1?
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