2 Pieces of Mathematics

1 Dissipation, Dispersion and Discrete Models

For linear PDEs (1 dimension here), one can look for exponential solutions e**%*. Notice
of course if \ is has positive real part, the equation is unstable and possibly ill-posed. For
standard examples of linear equations

Equation Phase relation
Ou + O,u =0 A= —ik

Oyu = 0,%u A= —k?

O = Bu A= —ik?

Now consider a standard argument for passing from a discrete collection of blocks joined
by springs to the continuum. Imagine a typical formulation

The usual expansion would read

Oy — T(“j+1)—2T]§;ﬂj)+T(Uj—1) @)

where u; = (y; — yj_1)/h, y; is the displacement of the j particle, and h is the equilibrium
interparticle distance. Expanding the RHS,

h2
Ohu; = BT (wy) + SOMT(wy) + O(hY) g
Usually one simply passes to the limit A — 0 and thats it. However if 7" is nonlinear -
in particular, non-harmonic - the higher order term provides useful information about the
continuum behavior. Set u; = w and assume 7 is linear. Then one has
2 2 h? 4
A= —k —k 4
+ 15 (4)
and the dispersion term leads to ill-posedness. (Note: Considering wave propagation in one
direction only lead to the KdV equation.)
[From Rosenau, Phys Rev D 36 (1987)] A way around the short wave blow-up is to reconsider
and recall the Chapman-Enskog expansion we saw earlier

Ofu = LT (u)] (5)

where £ =1 + %8% + O(h*). This operator can be inverted, and we write

—1 h2 2 4
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Apply to yields

h2
O*u = 0*T(u) + E@i@fT(u) (6)
Now the linearized dispersion relation is A2 = —k? — }f—;kQ)\Q or
—k2
o= 2 (7>
1+ 2 k2

Now the high frequency modes asymptote to an imaginary constant, while low frequency
waves behave much as they had earlier, with eigenvalue A\ ~ +ik.

It is worth returning to a linearized version of the discrete equation (2)) again, and look
at the action of the discrete shift operator ou; = ujyy so ou; = geMtkTTR = ¢ikhy T the
equation we have

L i 2 .
N = ﬁ(e M9 4 emthy = — ﬁ&n?(kh) (8)
The usual Taylor expansion of the sin gives the ill-posed result of . An expansion by
rational functions leads to (7).

2 Variation of Parameters

[Estep and Neckels, J. Comp. Phys213 (2006)] The second issue we tackle is to investigate
the variation of a parameter on the output of a system of equations. We illustrate with a
finite dimensional example first, then examine an ODE example. The methodology carries
over to PDEs directly.

2.1 A Nonlinear System

So imagine we want to solve
fx,A) = b (9)

where € RY and where A € R? is a parameter. We asume f is as smooth as we need it to
be. If we think of f as the action of an experiment, we often are not able to monitor all of
f on output, but only a functional of it - perhaps an average, or only one component of the
solution. By the Riesz representation theorem, there is a vector 1 € RY such that < x,v >
yields the functional of interest. For example, ¢ = %(1, 1,...,1)T is the average.

What if you could solve @D easily for some value p of the parameter, but wanted to know
the solution (or an estimate of it) for nearby values. Let y be the solution of f(y,u) = b.
Let A= D, f(y, ). Then there is a Green’s function ¢ such that

Aty =4

SO
<x 0> = <x,ATp> = < Ax,¢> (10)



Now compute a Taylor expansion around (y, i)
fxA) = fly. 1) + Dof(y, 1)@ —y) + Daf(y. ) (A —p) + R (11)
where R is the remainder. Now the f’s both equal b, so
<Ax,p> = <Ay, ¢>— < Drfly,n)A—p),¢>— <R, > (12)
Drop the remainder, we find

<x Y>> & <y, >—-<Df(y,n)(A—p), o> (13)

2.2 Example 1

Consider the system

Mzt 4o = 1 (14)

T —)\21'2 =1

For simplicity, choose 1 = (1,0)7 so < x,v¢ >= x;, and lets look near j1; = ji5 = 1 and the
solution y; = 1, yo, = 0.
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Putting it all together then,
<xp>=x ~ < (1,0),0>—< L0 A=l b > (17)
’ ! e 0 0 Ao —1 )7
2.3 Example 2
Here is a scalar ODE

where for simplicity take z € R!, and \;, A\g both 1-dimensional also. Here I am thinking of
A = A(w) as a random variable with some distribution. A solution z(¢, \(w)) is a stochastic
process. We need to make enough assumptions on x so the solution exists for the time of
interest.

Functionals: 9(s) = d(s — t) gives the solution at time ¢; ¢(s) = 1/T is the average of
the solution over [0, T7.



So the quantity of interest

dA@) = [ <ol \@),w(s) > ds

We are really trying to get an idea of the distribution of the solution as A varies.
The Green’s function solves the adjoint problem

—o(t) = AT(1)o(t) = w(t) T=t20 (19)
(1) = 0

and of course A(t) = D, f(y(t), u1) where y is the solution of the deterministic problem with
reference values (po, 7).
One can show

T T T
q(\) = /0 <z, > dsw /0 <y, > ds+ < No—po, 9(0) > +/0 < Dy f(y, 1) (Mi—p1), d(s) > ds
So if our problem is
z(t,A) = Ax(t,\) 0<t<T (20)
z(0) = o

with A random, and 9 (s) = §(s — t), then

t
aN) = 2(t.X) & y(t. )+ (A= ) [ @ Iy(s ) ds

The approximation is

y(t,\) = a(t) + \b(¢)
with

a(t) = xo(1 — pt)e! b(t) = xotet
What happens if A is normally distributed about 0?7 What is it is the initial data that

varies, at a fixed value of \{?
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