2 Pieces of Mathematics

## 1 Dissipation, Dispersion and Discrete Models

For linear PDEs (1 dimension here), one can look for exponential solutions $e^{\lambda t+i k}$. Notice of course if $\lambda$ is has positive real part, the equation is unstable and possibly ill-posed. For standard examples of linear equations

$$
\begin{array}{cc}
\text { Equation } & \text { Phase relation } \\
\partial_{t} u+\partial_{x} u=0 & \lambda=-i k \\
\partial_{t} u=\partial_{x}^{2} u & \lambda=-k^{2} \\
\partial_{t} u=\partial_{x}^{3} u & \lambda=-i k^{3}
\end{array}
$$

Now consider a standard argument for passing from a discrete collection of blocks joined by springs to the continuum. Imagine a typical formulation

$$
\begin{equation*}
\partial_{t}^{2} y=\partial_{x}\left[T\left(\partial_{x} y\right)\right] \tag{1}
\end{equation*}
$$

The usual expansion would read

$$
\begin{equation*}
\partial_{t}^{2} u_{j}=\frac{T\left(u_{j+1}\right)-2 T\left(u_{j}\right)+T\left(u_{j-1}\right)}{h^{2}} \tag{2}
\end{equation*}
$$

where $u_{j}=\left(y_{j}-y_{j-1}\right) / h, y_{j}$ is the displacement of the $j^{\text {th }}$ particle, and $h$ is the equilibrium interparticle distance. Expanding the RHS,

$$
\begin{equation*}
\partial_{t}^{2} u_{j}=\partial_{x}^{2} T\left(u_{j}\right)+\frac{h^{2}}{12} \partial_{x}^{4} T\left(u_{j}\right)+O\left(h^{4}\right) \tag{3}
\end{equation*}
$$

Usually one simply passes to the limit $h \rightarrow 0$ and thats it. However if $T$ is nonlinear in particular, non-harmonic - the higher order term provides useful information about the continuum behavior. Set $u_{j}=u$ and assume $T$ is linear. Then one has

$$
\begin{equation*}
\lambda^{2}=-k^{2}+\frac{h^{2}}{12} k^{4} \tag{4}
\end{equation*}
$$

and the dispersion term leads to ill-posedness. (Note: Considering wave propagation in one direction only lead to the KdV equation.)
[From Rosenau, Phys Rev D 36 (1987)] A way around the short wave blow-up is to reconsider (3) and recall the Chapman-Enskog expansion we saw earlier

$$
\begin{equation*}
\partial_{t}^{2} u=\mathcal{L} \partial_{x}^{2}[T(u)] \tag{5}
\end{equation*}
$$

where $\mathcal{L}=1+\frac{h^{2}}{12} \partial_{x}^{2}+O\left(h^{4}\right)$. This operator can be inverted, and we write

$$
\mathcal{L}^{-1}=1-\frac{h^{2}}{12} \partial_{x}^{2}+O\left(h^{4}\right)
$$

Apply to (5) yields

$$
\begin{equation*}
\partial_{t}^{2} u=\partial_{x}^{2} T(u)+\frac{h^{2}}{12} \partial_{x}^{2} \partial_{t}^{2} T(u) \tag{6}
\end{equation*}
$$

Now the linearized dispersion relation is $\lambda^{2}=-k^{2}-\frac{h^{2}}{12} k^{2} \lambda^{2}$ or

$$
\begin{equation*}
\lambda^{2}=\frac{-k^{2}}{1+\frac{h^{2}}{12} k^{2}} \tag{7}
\end{equation*}
$$

Now the high frequency modes asymptote to an imaginary constant, while low frequency waves behave much as they had earlier, with eigenvalue $\lambda \approx \pm i k$.

It is worth returning to a linearized version of the discrete equation (2) again, and look at the action of the discrete shift operator $\sigma u_{j}=u_{j+1}$ so $\sigma u_{j}=\sigma e^{\lambda t+i k(j+1) h}=e^{i k h} u_{j}$. In the equation we have

$$
\begin{equation*}
\lambda^{2}=\frac{1}{h^{2}}\left(e^{i k h}-2+e^{-i k h}\right)=-\frac{2}{h^{2}} \sin ^{2}(k h) \tag{8}
\end{equation*}
$$

The usual Taylor expansion of the sin gives the ill-posed result of (4). An expansion by rational functions leads to (7).

## 2 Variation of Parameters

[Estep and Neckels, J. Comp. Phys213 (2006)] The second issue we tackle is to investigate the variation of a parameter on the output of a system of equations. We illustrate with a finite dimensional example first, then examine an ODE example. The methodology carries over to PDEs directly.

### 2.1 A Nonlinear System

So imagine we want to solve

$$
\begin{equation*}
f(\mathbf{x}, \lambda)=b \tag{9}
\end{equation*}
$$

where $x \in \Re^{N}$ and where $\lambda \in \Re^{d}$ is a parameter. We asume $f$ is as smooth as we need it to be. If we think of $f$ as the action of an experiment, we often are not able to monitor all of $f$ on output, but only a functional of it - perhaps an average, or only one component of the solution. By the Riesz representation theorem, there is a vector $\psi \in \Re^{N}$ such that $\left.<\mathbf{x}, \psi\right\rangle$ yields the functional of interest. For example, $\psi=\frac{1}{N}(1,1, \ldots, 1)^{T}$ is the average.

What if you could solve (9) easily for some value $\mu$ of the parameter, but wanted to know the solution (or an estimate of it) for nearby values. Let $\mathbf{y}$ be the solution of $f(\mathbf{y}, \mu)=b$. Let $A=D_{x} f(\mathbf{y}, \mu)$. Then there is a Green's function $\phi$ such that

$$
A^{T} \phi=\psi
$$

so

$$
\begin{equation*}
\left.\left.<\mathbf{x}, \psi\rangle=<\mathbf{x}, A^{T} \phi\right\rangle=<A \mathbf{x}, \phi\right\rangle \tag{10}
\end{equation*}
$$

Now compute a Taylor expansion around ( $\mathbf{y}, \mu$ )

$$
\begin{equation*}
f(\mathbf{x}, \lambda)=f(\mathbf{y}, \mu)+D_{x} f(\mathbf{y}, \mu)(x-y)+D_{\lambda} f(\mathbf{y}, \mu)(\lambda-\mu)+R \tag{11}
\end{equation*}
$$

where $R$ is the remainder. Now the $f$ 's both equal $b$, so

$$
\begin{equation*}
<A \mathbf{x}, \phi>=<A \mathbf{y}, \phi>-<D_{\lambda} f(\mathbf{y}, \mu)(\lambda-\mu), \phi>-<R, \phi> \tag{12}
\end{equation*}
$$

Drop the remainder, we find

$$
\begin{equation*}
<\mathbf{x}, \psi>\approx<\mathbf{y}, \psi>-<D_{\lambda} f(\mathbf{y}, \mu)(\lambda-\mu), \phi> \tag{13}
\end{equation*}
$$

### 2.2 Example 1

Consider the system

$$
\begin{align*}
& \lambda_{1} x_{1}^{2}+x_{2}^{2}=1  \tag{14}\\
& x_{1}-\lambda_{2} x_{2}=1
\end{align*}
$$

For simplicity, choose $\psi=(1,0)^{T}$ so $\left.<\mathbf{x}, \psi\right\rangle=x_{1}$, and lets look near $\mu_{1}=\mu_{2}=1$ and the solution $y_{1}=1, y_{2}=0$.

$$
\begin{gather*}
D_{x}=\left(\begin{array}{cc}
2 \lambda_{1} x_{1} & 2 x_{2} \\
1 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)  \tag{15}\\
D_{\lambda}=\left(\begin{array}{cc}
x_{1}^{2} & 0 \\
0 & -x_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \tag{16}
\end{gather*}
$$

Putting it all together then,

$$
<\mathbf{x}, \psi>=x_{1} \approx<(1,0), \psi>-<\left(\begin{array}{ll}
1 & 0  \tag{17}\\
0 & 0
\end{array}\right)\binom{\lambda_{1}-1}{\lambda_{2}-1}, \phi>
$$

### 2.3 Example 2

Here is a scalar ODE

$$
\begin{align*}
\dot{x}(t, \lambda) & =f\left(x(t, \lambda), \lambda_{1}\right) \quad 0 \leq t \leq T  \tag{18}\\
x(0) & =\lambda_{0}
\end{align*}
$$

where for simplicity take $x \in \Re^{1}$, and $\lambda_{1}, \lambda_{0}$ both 1-dimensional also. Here I am thinking of $\lambda=\lambda(\omega)$ as a random variable with some distribution. A solution $x(t, \lambda(\omega))$ is a stochastic process. We need to make enough assumptions on $x$ so the solution exists for the time of interest.

Functionals: $\psi(s)=\delta(s-t)$ gives the solution at time $t ; \psi(s)=1 / T$ is the average of the solution over $[0, T]$.

So the quantity of interest

$$
q(\lambda(\omega))=\int_{0}^{T}<x(s, \lambda(\omega)), \psi(s)>d s
$$

We are really trying to get an idea of the distribution of the solution as $\lambda$ varies.
The Green's function solves the adjoint problem

$$
\begin{align*}
-\dot{\phi}(t)-A^{T}(t) \phi(t) & =\psi(t) \quad T \geq t \geq 0  \tag{19}\\
\phi(T) & =0
\end{align*}
$$

and of course $A(t)=D_{x} f\left(y(t), \mu_{1}\right)$ where $y$ is the solution of the deterministic problem with reference values $\left(\mu_{0}, \mu_{1}\right)$.

One can show
$q(\lambda)=\int_{0}^{T}<x, \psi>d s \approx \int_{0}^{T}<y, \psi>d s+<\lambda_{0}-\mu_{0}, \phi(0)>+\int_{0}^{T}<D_{\lambda_{1}} f\left(y, \mu_{1}\right)\left(\lambda_{1}-\mu_{1}\right), \phi(s)>d s$
So if our problem is

$$
\begin{align*}
\dot{x}(t, \lambda) & =\lambda x(t, \lambda) \quad 0 \leq t \leq T  \tag{20}\\
x(0) & =x_{0}
\end{align*}
$$

with $\lambda$ random, and $\psi(s)=\delta(s-t)$, then

$$
q(\lambda)=x(t, \lambda) \approx y(t, \mu)+(\lambda-\mu) \int_{0}^{t} e^{\mu(t-s)} y(s, \mu) d s
$$

The approximation is

$$
y(t, \lambda)=a(t)+\lambda b(t)
$$

with

$$
a(t)=x_{0}(1-\mu t) e^{\mu t} \quad b(t)=x_{0} t e^{\mu t}
$$

What happens if $\lambda$ is normally distributed about 0 ? What is it is the initial data that varies, at a fixed value of $\lambda_{1}$ ?

