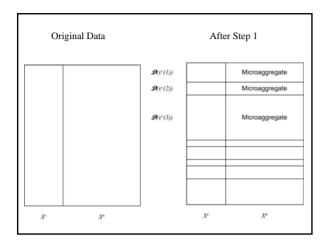
An Initial Experiment on Mixed Categorical and Numerical Data

Alan Karr Mi-Ja Woo January 31, 2006

Setting


- Data: $X = (X^c, X^n)$
 - $-X^c$ = categorical variables
 - $-X^n$ = numerical variables
- Problem: selection of microdata release
- Need
 - SDL procedures
 - Utility measure
 - Risk measure

Outline

- SDL
 - Step 1: Microaggregation on Xn, conditional on Xc
 - Step 2: Swapping on Xc
 - Step 3: Linear transformation on Xn
 - · Conditional on Xc
 - · Unconditional
- Utility
 - Propensity scores
- Risk
 - ?????

SDL Step 1

- x^c = observed value of X^c
- $\mathcal{D}(x^c) = \{X_i : X_i^c = x^c\}$
- Do microaggregation on each $\mathcal{D}(x^c)$ separately
- Advantage
 - Preserves relationships between X^c and X^n
- Disadvantage
 - $\mathcal{D}(x^c)$ may be too small for microaggregation to affect risk

SDL Step 2

- Swap (only!) X^c
- Choices
 - Attributes to swap
 - Swap rate

SDL Step 3

- Use linear transformation on (post-Step 2) X^n to restore covariance
 - Essentially what Mi-Ja has been looking at
- Two possibilities:
 - Conditional on x^c (i.e., separately on each $\mathcal{D}(x^c)$)
 - · Potential disadvantages
 - Swapping has occurred across the $\mathcal{D}(x^c)$
 - Really want to restore global covariance of x^n
 - Global

Propensity Score Utility

• Need mixed model here