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Distributed Maximum Likelihood Estimation

• A random sample x
n = {x1, · · · , xn}, while xi follows

f(x; θ)

• The sample distributed across different agencies

1. Horizontally partitioned

2. Vertically partitioned

• Traditionally, the MLE is defined as

θ̂ = arg max
θ

l(θ|xn)(1)

• Goal: compute θ̂ without sharing data between
agencies
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Horizontally partitioned, exponential family

• Density f(x) = b(x)exp{a(θ)T t(x) − c(θ)}

• Log likelihood

l(θ;xn) =
n
∑

i=1

log b(xi) +
n
∑

i=1

{a(θ)T t(xi) − c(θ)}

• The MLE is

θ̂ = arg max
θ

a(θ)T

n
∑

i=1

t(xi) − nc(θ)

• Secure summation of
∑n

i=1 t(xi)
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Horizontally partitioned, Newton Raphson

• Assume the estimates θ(s−1) from previous step, new
estimate is

θ(s) = θ(s−1) − (D2l(xn; θ(s−1)))−1∇l(xn; θ(s−1)),

D2l() is the Hassian and ∇l() is the gradient.

• Assume θ = {θ1, · · · , θk},

∇θl(x
n; θ(s−1)) =

(

∂l

∂θ1
, · · · ,

∂l

∂θk

)

=

(

n
∑

i=1

∂f(xi;θ
)

∂θ1

f(xi; θ)
, · · · ,

n
∑

i=1

∂f(xi;θ)
∂θk

f(xi; θ)

)

θ(s−1)

.
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Horizontally partitioned, Newton Raphson

• Locally, we can compute Lj, 1 ≤ j ≤ m, where

Lj =





mj
∑

i=1

∂f(xi;θ
)

∂θ1

f(xi; θ)
, · · · ,

mj
∑

i=1

∂f(xi;θ
)

∂θk

f(xi; θ)





θ(s−1)

.

• Similarly we can compute

Hj(h, l) =

mj
∑

i=1





∂2f(xi;θ
)

∂θh∂θl

f(xi; θ)
−

∂f(xi;θ
)

∂θh

∂f(xi;θ
)

∂θl

f 2(xi; θ)





θ(s−1)

.

• The iteration step becomes

θ(s) = θ(s−1) − (

m
∑

j=1

Hj)
−1(

m
∑

j=1

Lj),
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Horizontally partitioned, Newton Raphson

• Hj and Lj can be computed at each agency locally

• If m > 2, use secure summation

• Share
∑m

j=1 Hj and
∑m

j=1 Lj

• Possible problems

1. m > 2

2. Share more than necessary

• Direct computation of (
∑m

j=1 Hj)
−1(
∑m

j=1 Lj).
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Horizontally partitioned, direct computation

• Without loss of generaility, assume m = 2

• Note that when m = 2, secure summation can’t be
applied

• Our goal: Compute (H1 + H2)
−1(L1 + L2) securely

• Our approach: Solving linear equation system

• Denote X = (H1 + H2)
−1(L1 + L2), the problem is

equivalent to solve

(H1 + H2)X = (L1 + L2)
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Direct computation protocol

• Assume two agencies A and B

• A generates k × k matrix M1, B generates k × k matrix
M2, both with rank k/2.

• A sends M1 to B. B computes M1H2 and M1L2, sent
them to A

• A can produce the linear equation system

M1(H1 + H2)X = M1(L1 + L2)

• Symmetrically, B can produce

M2(H1 + H2)X = M2(L1 + L2)
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Protocol

• Sharing the two linear equation systems directly will
reveal H1 and H2.

• Solution: A and B generate full rank matrices T1 and T2

respectively

• Combine the following two linear equation systems to
solve for X

T1M1(H1 + H2)X = T1M1(L1 + L2).

T2M2(H1 + H2)X = T2M2(L1 + L2).
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Security analysis and discussion

• Agency A sent to B: M2H1,M2L1, T1M1(H1 + H2) and
T1M1(L1 + L2)

• A can check the rank of M2. When K > 2, H1 and L1

are not revealed

• Sharing of T1M1(H1 +H2) reveals T1H1 to B, but not H1

• Protocol is symmertric

• Protocol works for m = 2

• Unsolved case: k = 1. Need to compute
(l1 + l2)/(h2 + h2) securely
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Vertically partitioned case, independent variable

• Assume x
n = {x1, · · · , xn}, where xi = (x1

i , · · · , x
p
i ).

Each agency owns portion of the variables for all xi

• Independent case one: assume
f(xi, θ) = Πt

s=1fs(x
s
i ; θs)

• Log likelihood

l =
t
∑

s=1

[

n
∑

i=1

log fs(x
s
i ; θs)

]

• Right hand side can be optimized locally to obtain θs
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Vertically partitioned case, independent variable

• Indenpendent case two: f(xi, θ) = Πt
s=1fs(x

s
i ; θ)

• Log likelihood

l =
t
∑

s=1

[

n
∑

i=1

log fs(x
s
i ; θ)

]

• Taking first derivative with respect to θ

∂l

∂θ
=

t
∑

s=1

{

n
∑

i=1

[

1

fs(xs
i ; θ)

∂fs(x
s
i ; θ)

∂θ

]

}

• Compute locally at each agency and use secure
summation or the direct computation protocol
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Unsolved problems

• Boundary evaluation to identify global maximum

• Opt. out strategy

• General solution to vertical partition case

• Secure computation (l1 + l2)/(h2 + h2)

• Constrained MLE

θ̂ = arg max l(θ;xn) s.t. Cj(θ) 1 ≤ j ≤ m,

where Cj(θ) are the parameter constraints each
agency follows and can not be shared
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