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Abstract

When statistical agenciesreleasemicrodata to the public, malicious users (in truders) may be able to
link records in the releaseddata to records in external databases. Releasing data in ways that fail to
prevent such identi�cations may discredit the agency or, for some data, constitute a breach of law. To
limit disclosures,agenciesoften releasealtered versions of the data; however, there usually remain risks
of identi�cations. This article applies and extends the framework developed by Duncan and Lambert for
computing probabilities of identi�cation for sampled units. It describes methods tailored speci�cally to
data altered by recoding and topcoding variables, data swapping, or adding random noise{and combina-
tions of thesecommon data alteration techniques{which agenciescan useto assessthreats from intruders
who possessinformation on relationships among variables and the methods of data alteration. Using
data from the Current Population Survey, the article illustrates a step-by-step processfor evaluating
identi�cation disclosure risks for competing releasesunder varying assumptions of intruders' knowledge.
Risk measuresare presented for individual units and for entire data sets.
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1 INTR ODUCTION

When an agencyreleasesmicrodata (i.e. data on individual units) to the public, it seeksto limit the risk that
malicious usersare able to identify sampled units in the releaseddata. Such users,hereafter called intrud-
ers, can attempt identi�cations by linking records in the releaseddata to records from external databases.
Agencies releasing data in ways that fail to prevent identi�cations can face serious consequences.Their
reputations may be damaged,which in turn can diminish potential respondents' willingness to participate
in studies run by the agency. In somecases,unsafereleasesbreak laws that guarantee the con�dentialit y of
respondents' answers (Federal Committee on Statistical Methodology, 1978,1994;Willenborg and de Waal,
2001;Wallman and Harris-Ko jetin, 2004).

To reduceintruders' con�dence that attempted links are correct, agenciestypically alter microdata before
public release. Four of the most commonly employed techniques include: (i) recoding variables into coarse
categories, such as releasing only �v e year intervals for age; (ii) topcoding numerical data, for example
reporting all incomes above $100,000as \$100,000 or more"; (iii) swapping some units' data values with
other units' data values;and, (iv) adding random noiseto numerical data values. Ideally, the releaseddata
maintain a high level of utilit y; that is, they do not sacri�ce too much of the information contained in the
collected data. Generally, however, data modi�cations that increaseprotection decreaseutilit y (Duncan
et al., 2001). Gauging this risk-utilit y tradeo� necessitatesquantitativ e measuresof disclosurerisks.
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suggestions and comments. This research was supported by the National Academy of Sciencesand was presented at a workshop
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A framework for measuring identi�cation disclosurerisks was developed by Duncan and Lambert (1986,
1989) and Lambert (1993). They proposethat agenciesmodel the behavior of intruders to obtain probabil-
ities of identi�cation for sampledunits, and quantify sourcesof uncertainty about those probabilities using
Bayesianapproaches. Unfortunately , the literature on disclosurelimitation lacks illustrativ e applications of
the Duncan-Lambert approach on genuine data altered by common disclosure limitation techniques. One
exception is Fienberg et al. (1997), who describe a Bayesian approach for purely continuous data when
adding random noise,although their simulation study usesgeneratedrather than genuine data.

Perhapsbecauseof this dearth of published examples,many agenciesdo not useformal Duncan-Lambert
approaches to assessdisclosure risks. Instead, many agenciesmeasure risk as the estimated number of
releasedrecords that are unique in the population. Some perform reidenti�cation experiments (Federal
Committee on Statistical Methodology, 1994, pp. 79 - 80) by using record linkage software to investigate
which respondents are most at risk for identi�cation in potential releases.Thesetwo approachesare valuable
tools for risk analyses;however, as typically implemented, they do not fully mimic the behavior of intruders
who know and utilize multiv ariate relationships in the data and the methods of data alteration, and who
quantify uncertainty using Bayesianmethods. Hence,they may not fully measurerisks from such intruders.

This article appliesand extendsthe Duncan-Lambert framework using data from the Current Population
Survey, thereby providing an implementation of this approach on genuine data. It presents methods for
obtaining probabilities of identi�cation that utilize multiv ariate relationships in the data and are tailored
speci�cally to recoding and topcoding, swapping, and adding random noise{aswell as combinations of these
techniques{that can help agenciesassessthe threats from sophisticated intruders. The article illustrates a
step-by-step processof analyzing the impact on disclosurerisk of competing disclosurelimitation strategies
under di�ering assumptionsof intruders' knowledgeand behavior.

The remainder of the paper is organizedas follows. Section2 summarizesapproachesto measuringiden-
ti�cation disclosurerisks in microdata. Section 3 outlines methods that can be usedto assessidenti�cation
probabilities when releaseddata are altered by recoding and topcoding, data swapping, or noise addition.
Section4 illustrates the application of thesemethods to data from the Current Population Survey, presenting
both unit-speci�c and entire-�le measuresof identi�cation risk. Section5 concludeswith a generaldiscussion
of disclosurerisks and limitation methods.

2 MEASURES OF IDENTIFICA TION DISCLOSURE RISKS

Strategies for measuring identi�cation risks in microdata can be broadly classi�ed into two categories: 1)
estimating the number of recordsreleasedin the samplewhosecharacteristics are unique in the population,
and 2) estimating the probabilities that records possessedby intruders can be identi�ed from the released
data.

2.1 Population uniques

Several authors have proposeddisclosurerisk measuresthat are somefunction of the number of population
uniques. These include, among others, Bethlehem et al. (1990), Greenberg and Zayatz (1992), Skinner
(1992), Skinner et al. (1994), Chen and Keller-McNult y (1998), Fienberg and Makov (1998), Samuels(1998),
Pannekoek (1999), and Dale and Elliot (2001). Uniquenessis relevant becausepopulation uniquesgenerally
have higher risks of identi�cation disclosurethan non-uniques. Indeed, it hasbeensuggestedthat uniqueness
is a necessarycondition for identi�cation (e.g., Skinner, 1992). Typically, the number of population uniques
in the sample is not known and must be estimated by the agency.

While useful, population uniquenesshas somelimitations as a measureof disclosurerisk. First, it does
not account for the nature of the information possessedby the intruder. For example, when the intruder
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knows a particular target is in the sampleand knows valuesof that target's record, the intruder can identify
the target when it is a sample unique, even if it is not a population unique. Second,in somedata settings
there exist a large number of sampleand population uniques,especially when the data contain variables that
can be treated as continuous. It is not clear that the number of uniquesprovides much information in these
settings. Third, using the number of population uniques may not allow the agencyto gaugeaccurately the
e�ect of somestatistical disclosurelimitation procedures.For example,supposean agencyreleasesvaluesof
a continuous, key identi�er that have beenperturb ed with Gaussianrandom noise. The resulting perturb ed
records may contain just as many estimated population uniques as the original sample contains. Lastly,
estimating the number of population uniques accurately is di�cult to do in studies where the sampling
fraction is small, so that the measurescould be misleading.

2.2 Probabilities of Iden ti�cation

Other authors have proposed that agenciesattempt to link releasedrecords with target records, either
through direct matching using external databases(Paass,1988; Blien et al., 1992; Federal Committee on
Statistical Methodology, 1994;Yanceyet al., 2002)or indirect matching using the existing database(Spruill,
1982;Duncan and Lambert, 1986,1989;Lambert, 1993;Fienberg et al., 1997;Skinner and Elliot, 2002). In
both approaches,the agencyessentially mimics the behavior of an intruder trying to match releasedrecords
to target records.

Theseapproachesaddressmany of the shortcomingsof relying on population uniques. They can permit
agenciesto account for varying degreesof intruder knowledge, are equally appropriate for continuous and
categoricaldata, and can be applied to assessthe e�ects of statistical disclosurelimitation techniques. How-
ever, they may require strong assumptionsabout intruder behavior, which if wrong could lead to inaccurate
measuresof disclosure. They may be expensive to implement, both operationally and computationally. For
example, it may be di�cult and time-consuming for agenciesto obtain external �les for use with record
linkage techniques like those of Felligi and Sunter (1969). Finally, as mentioned in the intro duction, there
has beena dearth of evidenceand illustrations of theseapproacheson real-data.

The indirect probabilistic matching approach, which is the Duncan-Lambert approach, avoids the com-
plexity of obtaining external databases,while maintaining the exibilit y of modeling intruder behavior. As
we shall show, it also easily incorporates information about relationships amongvariables and the statistical
disclosurelimitation techniquesapplied to the data, which can help agenciesmimic sophisticated intruders'
behavior. We now turn to applying this approach.

3 DESCRIPTION OF DUNCAN-LAMBER T APPR OA CH AND
METHODS

For a collection of n sampledunits S, let yj k be the collected data for unit j on variable k, for k = 0; : : : ; d
and j 2 S. The column k = 0 contains unique unit identi�ers, such asnamesor social security numbers,and
is never releasedby the agency. It is convenient to split y j = (yj 1; : : : ; yj d) into two sets of variables. Let
yA

j be the vector of variables available to usersfrom external databases,such as demographicor geographic
attributes. And, let y U

j be the vector of variables that are unavailable to usersexcept in the releaseddata.
The compositions of A and U are determined by the agency for the particular S, basedon knowledge of
what information exists in external databases.It is assumedthat A and U are the samefor all units in S.

The agencyreleasesdata for r � n of the units in S, possibly altered for disclosurelimitation. Let zj k

be the releasedvalue for unit j on variable k. Let zA
j and zU

j be the releasedvaluesof the available variables
and unavailable variables, respectively. The sets A and U are the sameas those used to partition the y j .
The available variablescan be further divided into zA

j = (zAp
j ; zAd

j ). The zAp
j comprisesvariables in A whose
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valuesare altered from those in y A
j by a stochastic perturbation method, such as adding noiseor swapping

data. The zAd
j comprisesvariables in A whosevalues do not undergo stochastic perturbation, for example

available variables that are globally recoded or available variables for which zj k = yj k . Let zC
j = (zAp

j ; zU
j ),

whereC indicates the intruder cannot match on thesevariableswith 100%certainty becausethey have been
perturb ed or are not in the intruder's target record. Finally, let Z = (ZA ; ZU ) be the matrix of all released
data.

The intruder has a vector of information, t , on a particular target unit in the population which may or
may not correspond to a unit in Z. The column k = 0 in t contains a unique identi�er for that record. The
intruder's goal is to match unit j in Z to the target when zj 0 = t0, and not to match when zj 0 6= t0 for any
j 2 Z. We assumethat t has someof the samevariables as Z{otherwise there is little opportunit y for the
intruder to match{and we allow t to include partial information on values. For example,an intruder's t can
include the information that the income for someunit j is above $100,000,even though the intruder does
not know the unit's exact income. The variables of t that correspond to the variables in zAd are written as
t Ad , and likewisefor t Ap . As done by Fienberg et al. (1997), we assumethat t = y A

j for someunit j in the
population, although not necessarilyfor a unit in Z. That is, relative to the sampledvalues, the intruder's
values are not measuredwith error. This assumption may not be true in practice, but it provides upper
limits on the identi�cation probabilities and greatly simpli�es calculations.

Let J be a random variable that equalsj when zj 0 = t0 for j 2 Z and equalsr + 1 when zj 0 = t0 for some
j 62Z. The intruder thus seeksto calculate the Pr (J = j jt ; Z) for j = 1; : : : ; r + 1. He or she then would
decidewhether or not any of the identi�cation probabilities for j = 1; : : : ; r are large enough to declarean
identi�cation. The Pr (J = j jt ; Z) can be calculated using Bayesrule:

Pr (J = j jt ; Z) =
Pr (ZC jJ = j; t ; ZAd )Pr (J = j jt ; ZAd )

P r +1
j =1 Pr (ZC jJ = j; t ; ZAd )Pr (J = j jt ; ZAd )

(1)

We can split calculations into the available and unavailable components of zj . To reducenotation, we write
this split only for the �rst term in the numerator of (1):

Pr (ZC jJ = j; t ; ZAd ) = Pr (zC
1 ; : : : ; zC

j � 1; zC
j +1 ; : : : zC

r jzC
j ; J = j; t ; ZAd )

� Pr (zU
j jzAp

j ; J = j; t ; ZAd )Pr (zAp
j jJ = j; t ; ZAd ) (2)

When j = r + 1, it is convenient not to use (2) and instead calculate directly from Pr (J = r + 1jt ; Z) =
Pr (ZC jJ = r + 1; t ; ZAd )Pr (J = r + 1jt ; ZAd ). The components of (1) and (2) can be determined from
assumptionsabout the knowledgeand behavior of the intruder, as we now discuss.

3.1 Evaluating Pr (J = j jt ; ZAd )

For any variable k in zAd
j , when the value of tk is not consistent with the value of the releasedzj k , the

Pr (J = j jt ; ZAd ) = 0. For example, suppose t belongs to a 37 year old woman with property taxes of
$10,000. When sexesare not altered in the releaseddata, all maleshave Pr (J = j jt ; Z Ad ) = 0. When age
is releasedin �v e year intervals rather than exact integers, all people with agesoutside 35 to 39 have zero
probabilities. When property tax is topcoded at somevalue w < 10; 000, all people with property tax less
than w have zero probabilities.

When t is known to belong to a unit in Z, for example when all records of a censusare released,the
Pr (J = r + 1jt ; zAd ) = 0 and, for j � r , the Pr (J = j jt ; ZAd ) = 1=nt , where nt is the number of units in Z
with zAd

j = t Ad . It may be prudent to assumethe intruder knows particular target units are in Z, even when
S is not a census.For example, in a survey of households,neighbors may know that an interviewer visited a
sampledhousehold. When all recordsin S are included in the release,theseneighbors know that household
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must be in Z. Alternativ ely, someonewith inside information about which units are in the releaseddata
may attempt to discredit the agency. Even when knowledge that particular targets are in Z is di�cult to
comeby, setting Pr (J = r + 1jt ; ZAd ) = 0 results in conservative measuresof identi�cation disclosurerisks.

The calculations are more complicated when Pr (J = r + 1jt ; ZAd ) 6= 0. Let N t be the number of units in
the population that would have zAd

j = t Ad if their data were releasedin Z. Then, Pr (J = j jt ; ZAd ) = 1=N t

for units whosezAd
j are consistent with t , and Pr (J = r + 1jt ; ZAd ) = (N t � nt )=N t . For example,supposet

contains the age,race,sex,and incomeof an Asian-American man age57 whoseincomeis $125,000.Suppose
further that, in the population, there are 11,000Asian-American malesage57, of whom 1,200have income
more than $100,000and three have income exactly equal to $125,000. If age, race, and sex are released
without alteration, and income is perturb ed stochastically without any restrictions, then N t =11,000. If age,
race, and sexare releasedwithout alteration, and incomeis topcoded at $100,000(or is blurred in someway
that restricts the releasedincome to be at least $100,000),then N t =1,200. If age,race, sex,and incomeare
releasedwithout alteration, then N t = 3.

The agency, and the intruder, may be able to determine N t from censustotals, particularly when ZAd

contains only categorical, demographic characteristics. When N t is not known, it must be estimated from
available sources. One approach is to set N t equal to the sum of the survey weights for all units in Z
whosezAd

j are consistent with t . Although unbiased, the survey-weighted estimate could poorly estimate
N t , especially when units like t are rare in S or when t contains continuous attributes. Alternativ ely, N t

can be estimated using model-basedapproaches,such as those usedto determine the number of population
uniques (seeSection 2.1 for references).To avoid making decisionsbasedon overly optimistic estimatesof
the reidenti�cation probabilities, agenciescan adopt a conservative approach and assumethe intruder knows
the target is in Z.

If ZAd contains no variables, for example when all releasedvariables are subject to stochastic dislosure
limitation, the Pr (J = j jt ) = 1=N for j � r , and Pr (J = r + 1jt ) = (N � r )=N , where N is the number of
units in the population.

3.2 Evaluating Pr (zAp
j jJ = j; t ; ZAd )

It is reasonableto assumethe intruder knows which variables in ZA are subject to stochastic perturbation,
as well as the general nature of those perturbations. This meta-information might be made available by
agenciesso that users of the data know the limitations of their analyses. Stochastic perturbations often
are done independently on variables. We assumethat the intruder believes this to be the case, so that
Pr (zAp

j jJ = j; t ; ZAd ) = � k Pr (zAp
j k jJ = j; t ; ZAd ).

We now describe methods for evaluating probabilities for j � r when the zAp
j are generatedfrom data

swapping or additiv e Gaussiannoise. When j = r + 1, the methods described in Section 3.4 are used.

3.2.1 Data Swapping

Values of key identi�ers can be swapped to reduce intruders' con�dence in the accuracy of the released
values,asproposedinitially by Dalenius and Reiss(1982). Data swapping may be as simple as choosing two
units at random and swapping their valuesof a variable, or it could involve constraints on which units can
be swapped, e.g. only units within similar geographicareasare allowed to be swapped.

Of course, for any variable k subject to swapping, the intruder does not know for any unit j whether
zj k = yj k . To estimatePr (zj k jJ = j; t ; ZAd ) for a swappedvariable k, the intruder cansimulate the swapping
mechanism of the agency on Z, as shall be demonstrated in Section 4. For example, suppose the agency
performs an unconstrained, random swap such that all pairs of units (i; j ) have probabilit y � k of having
their valuesof variable k swapped. Further, supposethe intruder can guessthe value of � k reasonablywell.
The intruder then applies random data swapping with probabilit y � k to the releaseddata, and calculates
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the frequenciesof the various combinations of the newly swapped valuesand the original values in Z. This
simulation is repeatedmany times, and the resulting frequenciesare averagedacrosssimulations to estimate
the Pr (zj k jJ = j; t ; ZAd ).

Reasonablyaccurate intruder simulation may not be unrealistic. Intruders know that agenciestypically
swap only small fractions of values to preserve data utilit y, and they may possessgeneral descriptions of
the swapping methods from agencies'publications. By assuming the intruder can simulate the swapping
mechanism precisely, agenciesobtain conservative estimates of the identi�cation probabilities. When the
agencybelieves the intruder cannot know the swapping mechanism, or it is too complicated to determine
all pairs' swap probabilities, a sensiblemodel for the intruder, and henceagencies'disclosureevaluations,
is to assumea constant swap probabilit y for all pairs of units, possibly within geographicareasreecting
any constraints on the swaps. The agencythen can assessthe sensitivity of disclosurerisks to a variety of
intruders' choicesof � k .

3.2.2 Noise Addition

For continuous attributes, agenciescan add random noise to discourageexact matches. Noise is usually
generatedfrom distributions with expectation equal to zero,soasto maintain unbiasednessin the estimators
for population means. A commonchoicefor the noisedistribution is a Gaussiandistribution with meanzero
and somevariance � 2

k speci�ed to provide su�cien t protection. When perturbing more than one variable,
it is typical to generateuncorrelated noise. This can provide better protection relative to correlated noise
(Fuller, 1993).

It is reasonableto assumethe intruder knows approximately the distribution usedto generatethe noise.
This might be available directly from the agency itself to allow users to correct for measurement error
(Fuller, 1993). When only the distributional family of the noise is released, intruders may be able to
estimate parameters of the distribution by comparing the mean and variance of the perturb ed data to the
mean and variance of external values, or to published summary statistics. To model intruders' behavior
for variables perturb ed by Gaussian noise, the agency can assumefor these variables that Pr (zj k jJ =
j; t ; ZA;d ) = N (zj k jtk ; � 2

k ). When releasedvalues are constrained to lie within certain ranges, for example
monetary valuesmust be positive, the agencyand intruder can usetruncated distributions.

3.3 Evaluating Pr (zU
j jzA

j ; J = j; t ; ZAd )

The intruder doesnot possessexact valuesof the target's unavailable variables. To evaluate the probabilit y
associated with zU

j , the intruder can useprior beliefsabout the valuesof the y U
j and zU

j . The intruder then
averagesover the distribution reecting those beliefs to obtain

Pr (zU
j jzA

j ; J = j; t ; ZAd ) =
Z

Pr (zU
j jyU

j ; zA
j ; J = j; t ; ZAd )Pr (yU

j jzA
j ; J = j; t ; ZAd )dyU

j (3)

where Pr (y U
j jzA

j ; J = j; t ; ZAd ) is the intruder's distribution on the target's values of the unavailable vari-
ables.

Agenciesmay decide not to alter some of the variables in U. For these variables, the agency should
set Pr (zj k jzA

j ; J = j; t ; ZAd ) = 1. This is becauseonly one possiblevalue can be releasedas zj k , and it is
prudent for agenciesto act as if the intruder knows this.

For thosevariablesin U that are altered, the intruder, and the agencyseekingto model intruder behavior,
speci�es Pr (zj k jyj k ; zA

j ; J = j; t ; ZAd ) to reect the disclosurelimitation techniques applied to yj k , as done
in Section3.2. The intruder speci�es Pr (yj k jzA

j ; J = j; t ; ZAd ) basedon available information. For example,
the intruder might usea regressionof Yk on ZA , with parameters estimated from external data or even Z.
Partial information, for example knowledge of bounds on the target's yj k , also can be incorporated in the
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probabilit y distribution. When the intruder has no data or beliefson which to basea distribution, he or she
can usea uniform distribution on somereasonablerange.

The agencycan evaluate the integrals using numerical approximations. An alternativ e method is to draw
many valuesfrom Pr (y U

j jzA
j ; J = j; t ; ZAd ), then calculate the Pr (zU

j jyU
j ; zA

j ; J = j; t ; ZAd ) for those drawn
values,and �nally averagetheseprobabilities acrossthe draws. This simulation method is particularly useful
for incorporating partial information about the target's unavailable variables. For example, if the intruder
can bound the target's income, the agencycan draw repeatedly values of income from its distribution but
evaluate the integral usingonly thosedraws that lie within the boundedregion. It is essential to simulate very
large numbers of values, e.g. hundreds of thousands, to obtain accurate estimates, especially for variables
with skewed distributions or outliers.

It is, of course,a challengefor the agencyto predict exactly what distributions the intruder will use. A
prudent strategy is to assumea sophisticated intruder with accessto accurate global relationships in the
data. Such relationships could exist in external databases,or they may be{and to maintain data utilit y
perhapsshould be{preserved in Z. Hence,the agencyshould predict the unavailable variables as accurately
as possible,using the data in S to estimate parameters.

Some intruders may decide to forego modeling of the target's unavailable variables, and assumethe
Pr (zU

j jzA
j ; J = j; t ; ZAd ) = 1. It is therefore wise for agenciesto evaluate disclosure risks under this

assumption as well, even when the y U
j are altered before release.

3.4 Evaluating Pr (zC
1 ; : : : ; zC

j � 1; zC
j +1 ; : : : zC

r jzj ; J = j; t ; ZAd )

As in Section 3.3, the intruder can specify distributions for the y C
j and zC

j to calculate the �nal pieceof (2).
The probabilit y associated with this pieceequals:

Z
Pr (zC

1 ; : : : ; zC
j � 1; zC

j +1 ; : : : zC
r jyC ; zj ; J = j; t ; ZAd )Pr (yC jzj ; J = j; t ; ZAd )dyC : (4)

A simpli�cation ariseswhen the intruder assumesindependencein the (zC
i ; yC

i ) acrossunits i , so that the
probabilit y in (4) can be expressedas the product:

�
� j � 1

i =1

Z
Pr (zC

i jyC
i ; zAd

i )Pr (yC
i jzAd

i )dyC
i

� �
� r

i = j +1

Z
Pr (zC

i jyC
i ; zAd

i )Pr (yC
i jzAd

i )dyC
i

�
(5)

After substitution of (5) in the numerator and denominator of (1), and subsequent cancellations, we can
replace Pr (zC

1 ; : : : ; zC
j � 1; zC

j +1 ; : : : zC
r jzj ; J = j; t ; zAd ) in (1) with 1=

R
Pr (zC

j jyC
j ; zAd

j )Pr (yC
j jzAd

j )dyC
j for

j � r and with 1 for j = r + 1. These probabilities can be determined using simulations or numerical
approximations as suggestedin Section 3.2 and 3.3. We note that, unlike in Section 3.2, theseprobabilities
are not conditional on J and t . Valuesof y Ap

j must be averagedover as well. For those variables in U with
zj k = yj k for all j , the agencyshould assumefor all j that Pr (zj k jzAd

j ) = 1.
Someintruders may forego estimating

R
Pr (zC

j jyC
j ; zAd

j )Pr (yC
j jzAd

j )dyC
j . This may be to easecompu-

tations or becausethey do not have strong beliefs in the distributions for the y C
j . These intruders can act

as if only unit j 's valueshave beenaltered, so that the probabilities in (4) equal one. This givesreasonable
estimates of identi�cation probabilities when the Pr (zC

j jzAd
j ) are roughly equal. It is prudent for agen-

cies to evaluate disclosurerisks under this model of intruder behavior, in addition to assuminginformativ e
distributions for the y C

j .
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Table 1: Description of variables used in the simulations

Variable Label Range
Sex X male, female
Race R white, black, American Indian, Asian
Marital status M 7 categories,coded 1{7
Highest attained education level E 16 categories,coded 31{46
Age (years) G 15 { 90
Child support payments ($) C 0, 1 { 23,917
Social security payments ($) S 0, 1 { 50,000
Householdproperty taxes ($) P 0, 1 { 99,997
Householdincome ($) I -21,011{ 768,742

4 SIMULA TIONS

To illustrate the methods of Section 3, we use public releasedata from the March 2000U.S. Current Pop-
ulation Survey. The data comprise51,016headsof householdsand the nine variables displayed in Table 1.
These variables were selectedand provided by statisticians at the U.S. Bureau of the Census. There are
no geographic identi�ers in the data. Survey weights are included on the �le. We assumethe population
comprises104,781,947households,which is the sum of the survey weights. These data also were used by
Reiter (2003, 2005a,b)to illustrate synthetic data approachesto protecting con�dentialit y.

Marginally, there are ample numbers of peoplein each sex, race, marital status, and education category.
Many cross-classi�cations,however, have few or zero people,especially those involving minorities with M 62
f 1; 7g. There are 12,021people who receive social security payments and 1,677 who receive child support
payments, and 33,076have positive property taxes. There are 132 householdswith negative income, 582
with zeroincome,and the remainder with positive income. The negative incomesare legitimate values: some
householdsactually report paying out more money than they took in over the year. The distributions of
positive values for all monetary variables are right-skewed.

4.1 Description of Disclosure Limitation Metho ds

We presume the agency plans to releaseall 51,016records, with some data values possibly altered. The
particular disclosure limitation techniques applied here are illustrativ e and are not claimed to be optimal,
and the utilit y of the resulting releaseddata is not consideredhere. The techniques include:

� R: Swap randomly 30% of races.

� M : Swap randomly 30% of marital statuses.

� G: Recode agein �v e year intervals, e.g. 40 � G < 45.

� P: For positive values,add random noisedrawn from N (0; :102� 2
k ), where � 2

k = 29072 is the variance
of the positive valuesof sampledproperty tax values. When altered valuesof P are negative, re-draw
until we get positive values. Zero valuesare not altered. Topcoding of P using several cutpoints is also
employed.

� X ; E ; C; S; I : Leave sex, education, child support, social security, and income at their original values.
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Table 2: Actual and altered valuesfor units of study

Unit and Data X G R M P I
Everyman

Original M 43 1 1 635 40000
Altered M 40 - 44 1 1 596 40000

Unique
Original F 39 3 3 0 12700
Altered F 35 - 39 3 1 0 12700

Big I
Original M 57 1 1 1100 768742
Altered M 55 - 59 1 1 1210 768742

Big P
Original F 79 1 4 99997 94552
Altered F 75 - 79 1 1 100033 94552

We assumethat the user knows thesetechniqueshave beenapplied to the data, although we do not assume
the userknows the valuesof the random noisenor which units wereswapped. It is possibleto swap randomly
identical valuesof race and marital status, so that for all practical purposesno swap has taken place.

4.2 Iden ti�cation Discloure Risks for Individual Units

We calculate Pr (J jt ; Z) for four units in the data set. \Ev eryman" has values of all variables near their
medians. \Unique" is a 39 year old Nativ e American woman whosespouseis not living at home, the only
person in the �le with that combination of characteristics. \Big I " has the largest income in the data set
(I = 768; 742), which is about $150,000larger than the secondlargest income. \Big P" has the largest
property tax value in the data set (P = 99; 997). Three other people have this amount. The values in the
original and altered data are displayed in Table 2.

4.2.1 User Kno ws f X ; R; M ; Gg

In this section, we assumethat the intruder knows the sex, race, martial status, and exact ageof the target
t . But, the intruder doesnot have any knowledgeabout the valuesof other variables in the data set. Hence,
A contains f X ; R; M ; Gg, and U contains f E ; C; S;P; I g.

We �rst consider releasing the data without applying any disclosure limitation, so that zj = y j . It is
prudent to assumethe intruder knows this, so that we set Pr (ZU jJ = j; t ; ZA ) = 1 for all j . For any unit
j with zA

j 6= t , the probabilit y of identi�cation in (1) equalszero. The probabilit y for units whosezA
j = t

dependson whether the intruder knows the target is in S. When the intruder doesknow this, for any unit
j whosezA

j = t the Pr (J = j jt ; Z) = 1=nt , where nt is the number of units in the sample with zA
j = t .

When the intruder is not sure the target is in S, we sum the survey weights of these n t units to estimate
N t , the number of potential matches in the population. Then, Pr (J = j jt ; Z) = 1=N t for j � n, and
Pr (J = n + 1jt ; Z) = (N t � nt )=N t .

The probabilities of identi�cation are displayed in the column of Table 3 labeled \No SDL." When the
intruder knows the target is in the releasedsample, it is not possibleto identify with precision any unit but
Unique, which can be identi�ed with probabilit y one. The probabilities decline sharply when the intruder
does not know the target is in the sample. The estimated probabilities that J = r + 1 are at least 0.9995
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Table 3: Probabilities of identi�cation when A = f X ; R; M ; Gg. In parenthesesare the numbers of other
units in samplewith probabilit y at least as large as the target's probabilit y.

Unit No SDL Age recode RM swaps Age recode + RM swaps

Intruder knows target in z

Everyman .0022(454) .00045(2229) .0023(409) .00045(2025)
Unique 1 (0) 1 (0) .022 (9) .0047 (48)
Big I .0029(344) .00067(1497) .0031(299) .00069 (1354)
Big P .0060(165) .0013 (775) .0046(168) .00097 (835)

Intruder unsure target in z

Everyman .000001 .0000002 .000001 .0000002
Unique .00032 .00032 .000001 .0000003
Big I .000002 .0000003 .000002 .0000003
Big P .000003 .0000006 .000002 .0000005

for all four targets. Becausethere is only one sampled unit with the characteristics of Unique, her N t is
estimated with high variance, so that Pr (J = r + 1jt ; Z) may be too small when she is the target. It may
be prudent for agenciesto assumethe intruder knows Unique is in the sample.

We next considerrecoding ageinto �v e year intervals asexempli�ed in Table 2. Age recoding can increase
the number of peoplewho satisfy zAd

j = t , which improvesprotection. The probabilities of identi�cation are
displayed in the column of Table 3 labeled \Age recode." When the target is known to be in S, recoding
age reducesprobabilities by a factor of about �v e for all targets except Unique. For Unique, no other unit
with the same sex, race, and marital status is in the same age interval. We note that changing the age
recoding to stretch from 36 to 40 adds a secondpersonto Unique's group, thereby reducing her probabilit y
of reidenti�cation to 0.5. When the targets are not known to be in S, all estimated probabilities are small.
Here, the Pr (J = r + 1jt ; ZAd ) is basedon the sum of the weights for units who match t on race,sex,marital
status, and �v e year ageinterval.

We next consider swapping some units' race and marital status, but releaseexact ages. Hence, Z Ad

contains values for sex and age, and ZAp contains values for race and marital status. To calculate the
Pr (zAp

j jJ = j; t ; ZAd ), we �rst simulate the data swapping procedureon the releaseddata Z to obtain a new
data set Z � . From Z � we determine the percentages of white racesswapped with other white races, with
black races, with Nativ e American races, and with Asian American races. This is repeated for the other
three racesto obtain a 4 � 4 matrix of swap percentages, R � . Similar enumerations are done with marital
status to obtain a 7 � 7 matrix of swap percentages for marital status, M � . This processof simulation is
repeated one hundred times, and the resulting R � and M � are averagedacrosssimulations to obtain �R and
�M . The Pr (zAp

j jJ = j; t ; ZAd ) is the product of (i) the entry in �R corresponding to the race in t and the
releasedvalue of race for unit j , and (ii) the entry in �M corresponding to the marital status in t and the
releasedvalue of marital status for unit j .

We also must calculate the Pr (zAp
j jZAd ), as discussedin Section 3.4. These are used to approximate

the Pr (zC
1 ; : : : ; zC

j � 1; zC
j +1 ; : : : zC

r jzC
j ; J = j; t ; ZAd ) in (1). To do so, conceptually we simulate true valuesof

race and marital status for each unit, and then apply the data swapping probabilities in �R and �M to those
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simulated values. To easecomputing expenses,we approximate this by using the estimated probabilities for
each race and marital status combination as follows. Using Y A , we �t a multinomial regressionof the 28
race-marital status categorieson ageand sex to obtain, for each j , the estimated probabilit y for each of the
categories,�̂ j h , where h = 1; : : : ; 28. We then compute the dot product of (i) the vector of �R corresponding
to the unit's releasedvalue of race, and (ii) the �̂ j h for each race. We also compute the dot product of (i)
the vector of �M corresponding to the unit's releasedvalue of marital status, and (ii) the �̂ j h for each marital
status. The Pr (zAp

j jZAd ) equalsthe product of the the two dot products.
As an example of the above computations, consider a record j with releasedrace being black. Suppose

the predicted probabilities of each racefor unit j are .82 for white, .12 for black, .01 for Nativ e American, and
.05 for Asian American. These are obtained by summing the predicted probabilities from the multinomial
regressionacrossmarital statuses for each race. Suppose now that the swap probabilities in �R when the
releasedrace is black are .05 when the true race is white, .75 when the true race is black, .10 when the true
race is Nativ e American, and .10 when the true race is Asian American. We then compute the weighted
sum (:82)(:05)+ (:12)(:75)+ (:01)(:10)+ (:05)(:10). A similar processis usedfor marital status, and the two
weighted sumsare �nally multiplied together.

The estimated probabilities of identi�cation for data swapping alone are displayed in the column \ RM
swaps" in Table 3. For Everyman and Big I, the swapping doesnot improve protection relative to releasing
actual values. This is becausethese two units, which have the most common values of race and marital
status, do not have their data altered. On the other hand, Unique has its marital status swapped, which
dramatically lowers its probabilit y of identi�cation. We also note that, when Unique is the target, other
units in the releaseddata have larger identi�cation probabilities, so that intruders matching on the largest
probabilit y will obtain a falseidenti�cation. When the targets are not known to be in S, Pr (J = r + 1jt ; Z Ad )
is basedonly on the sum of the weights for units matching on sex and exact age.

Someintruders naively might treat the releasedrace and marital status values as real when matching,
essentially acting as if raceand marital status are components of ZAd . When not many valuesare altered by
data swapping, intruders who follow this naive strategy can increasethe probabilities of matching correctly
for recordswhosevaluesare not altered by swapping, such as Everyman and Big I . But, they decreasethe
probabilities for recordswhosevaluesare altered by swapping, such asUnique and Big P. This is illustrated
in the CPS data set: the probabilities for the naive strategy{when swapping raceand marital status without
recoding ageand assumingthe intruder knows t is in the sample{areslightly higher for Everyman and Big P
(.0024and 0.0033,respectively) and equalzerofor Unique and Big P. The increasesfor Everyman and Big P
are small becausethere are many potential matcheswith R = M = 1, and the probabilities of swapping from
onesto onesare near .90, so that exact knowledgeof race and marital status for these units doesnot help
much. Exact knowledge can increaseprobabilities substantially for units for whom there are few matches
and the chancesof true swaps are signi�can tly less than one. For example, for one 34 year old, divorced
Nativ e American woman whoserace and marital status were not swapped, the probabilit y equals0.07 using
the approach that accounts for swapping and equalsone under the naive approach. For both approaches,
shehas the largest probabilit y of identi�cation and so would be matched correctly.

Lastly, we consider using both the age recoding and the data swapping. In this case,the multinomial
regressionis �t using the agecategoriesrather than exact ages.The estimated probabilities of reidenti�cation
for recoding and data swapping are displayed in the column \Age recode, RM swaps" in Table 3. The
combination of swapping and recoding substantially reducesthe probabilit y of identi�cation for Unique,
perhaps to the point where agenciescan feel con�dent that intruders who know only f X ; R; M ; Gg will not
be able to identify precisely thesetargets in the releaseddata.
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Table4: Probabilities of identi�cation whenA = f X ; R; M ; G; Pg. Intruder knowstarget in Z. In parentheses
are the numbers of other units in samplewith probabilit y at least as large as the target's probabilit y.

Unit No SDL Age recode + RM swaps Age recode + RM swaps + P perturb ed
Everyman .5 (1) .5 (1) .0016(134)
Unique 1 (0) .01 (26) .01 (26)
Big I .14 (6) .05 (20) .0028 (29)
Big P 1 (0) 1 (0) 1 (0)

4.2.2 User Kno ws f X ; R; M ; G; Pg

In this section, we assumethe intruder also knows the targets' valuesof property taxes, which are available
from most local governments. There are 2,534 distinct values of property taxes, of which 527 have only
one householdat that value. Out of the 33,076householdswith positive property taxes, there are 21,211
householdswith unique combinations of age, race, sex, marital status, and property tax. Clearly, when the
intruder knows certain targets are in the sample, releasingproperty taxes without someform of alteration
could result in easy identi�cations. Becauseof the large number of sample uniques when P is known, we
adopt a conservativeapproach to estimating the identi�cation disclosurerisk by assumingthe intruder knows
the targets are in the sample.

The No SDL column of Table 4 displays the probabilities of identi�cations assumingno disclosurelimita-
tion on any variables. The results di�er from the corresponding column of Table 3 becauseP is now assumed
known. This knowledgedramatically increasesthe probabilities of identi�cations, making Big P unique and
Everyman nearly unique. In fact, even knowing just R and P{whic h occurs, for example,when the intruder
knows a certain household head has been sampled, perhaps by direct observation or hearsay, and deter-
mines race from characteristics of the neighborhood and property tax from available public records{results
in probabilities of 0.2 for Big P and 0.125for Everyman in the No SDL setting.

We next consider the identi�cation probabilities after recoding age and swapping RM , assumingP is
known. To do so, we use the sameswapping strategies as previously. The probabilit y calculations proceed
as in Section 4.2.1, with the addition of a linear term for P in the multinomial regressionfor estimating
predicted probabilities of the RM categories. The estimated probabilities of identi�cation are shown in
the third column of Table 4. It is clear that knowledge of P can increasethe identi�cation probabilities
substantially . However, when race and sex are swapped, the identi�cation probabilities for all units except
Big P are lessthan .50.

To reduce further the chance of disclosures,the agencycan add random noise to the values of P. We
simulate this by adding noisedrawn from independent N (0; 2902) to positive property tax values,restricting
values to be always positive. Property taxes equal to zero are not altered. We assumethe intruder can
estimate the noisevariance reasonablywell, for exampleby comparing the variance of the released,positive
property taxes to published variance estimates or to external databases. Or, the intruder knows the noise
variance when the agency releasesinformation on the noise distribution. We also assumethe agencyuses
agerecoding and data swapping of marital status and race, as described in the previous section. Thus, Z Ad

contains valuesfor sex and age,and the ZAp contains valuesfor marital status, race, and property taxes.
To determine the additional component of Pr (zAp

j jJ = j; t ; ZAd ) due to perturbing property taxes, we
use the value of the density function for a truncated normal distribution with mean equal to the target's
property tax value and variance equal to 2902. The truncation is at zero becauseall perturb ed taxes must
be positive. When property taxes are rounded and releasedas integers,a slightly more accurate probabilit y
is obtained by using the area within � 0:5 of the releasedtax value.
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Table 5: Probabilities of identi�cation for Big P for di�ering topcode cutpoints for P, assumingagerecoding,
swapping of R and M , and no noise added to P. In parenthesesare the numbers of other units in sample
with probabilit y at least as large as the target's probabilit y.

Cutpoint w # recordswith P > w Probabilit y of identi�cation
35,000 28 .500 (1)
10,000 253 .216 (3)
5,000 1,100 .056 (14)
3,000 3,448 .016 (52)

To determine the Pr (zAp
j jZAd ), we approximate each integral,

R
Pr (zC

j jyC
j ; zAd

j )Pr (yC
j jzAd

j )dyC
j . We

again assumethat Pr (zU
j jZAd ) = 1 for all units. Conceptually, the integrals can be approximated as follows.

First, using Y A , �t a multinomial regressionmodel for the 28 level variable for race and martial status,
conditional on sex and age groups. Generate values of race and marital status for each unit basedon this
�tted multinomial regression.Second,using Y A , �t a regressionof log(P) on indicator variables for the �v e-
year agecategories,marital status, race, and sex. Generatevaluesof the property tax for each unit, based
on the �tted regressionand the simulated valuesof race and marital status. Third, for these drawn values
Y Ap � , calculate valuesof the Pr (zAp

j jyAp �
j ; zAd

j ) basedon the disclosurelimitation procedures.Finally, draw

repeatedly valuesof Y Ap � , and averagethe resulting Pr (zAp
j jyAp �

j ; zAd
j ) for each unit. This processrequires

hundreds of thousandsof draws of Y Ap to get draws su�cien tly closeto the outliers of property taxes. The
integral also can be approximated numerically, which is the approach taken here.

The results are displayed in the �nal column of Table 4. Adding noise to P substantially reducesthe
probabilities for Big I and Everyman. It doesnot protect Unique or Big P any further. Unique has a zero
property tax, which is not perturb ed. Big P is perfectly identi�ed becauseno other personin the samplein
her agegroup has a property tax within $60,000of Big P 's value; hence,even when adding noise, she will
be identi�ed by an intruder who knows sheis in the sample.

The amount of noise needed to reduce Big P 's identi�cation probabilit y su�cien tly is so large that
it renders property taxes uselessfor analysis. A potential solution is to use topcoding, releasing values
of P greater than some cutpoint w only as \greater than w." Using topcoding, or other deterministic
categorizations, without adding noise to P is a form of recoding. Probabilities of identi�cation associated
with this strategy are determined using the methods outlined in Section 3.1 and 4.2.1. When swapping race
and marital status, the multinomial models used to estimate predicted probabilities of the swapped RM
categoriesinclude terms for the categoriesof P.

Probabilities of identi�cation for Big P after topcoding{assuming age recoding, swapping of race and
marital status, and not adding noise to P{are presented in Table 5. A topcode of $35,000(and at most
$35,999)reducesthe probabilit y of identi�cation for Big P to 0.5. Data utilit y may be minimally a�ected,
since only 28 people fall in this top tier of property taxes. Probabilities are reduced further for smaller
values of w. In fact, for w � 10; 000, Big P is not among the highest probabilit y matches. Several records
have larger probabilities of identi�cation because,unlike Big P, their releasedrecordshave M = 4, which is
Big P 's true marital status. Decreasingw coarsensproperty tax values for increasing numbers of records,
which reducesdata utilit y. We note that the probabilities for Everyman, Unique, and Big I do not change
appreciably becausetheir property taxes are well below $3,000.

Topcoding alone may not su�cien tly protect those records with P < w. The agency could releaseP
as a fully categorical variable, specifying the categoriesby gauging risk and utilit y tradeo�s. Determining
probabilities of identi�cation for this strategy is a straightforward application of recoding and is not pursued
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here. Another approach is to topcode when P > w and add random noisewhen P < w, ensuring that the
noise does not push a record with P < w into the topcoded category. For this strategy, agenciescan use
distributions truncated at w (and zero) when evaluating Pr (zAp

j jJ = j; t ; ZAd ) for releasedproperty tax

values lessthan w. Property taxes exceedingw are part of ZAd , so that the Pr (zAp
j jJ = j; t ; ZAd ) involves

only probabilities for the swapping of raceand marital status. We examinethis strategy in the next section.

4.3 Iden ti�cation Disclosure Risks for Entire Data Set

To assessidenti�caton disclosurerisks for the entire data set, we supposethat the intruder posessescorrect
recordsfor all units in the releaseddata and seeksto match each of the targets to a record in the releaseddata.
This assumessubstantial knowledgeon the part of the intruder, but it facilitates calculation of identi�cation
disclosurerisks. The resulting measureslikely overstate the global risks when the intruder doesnot have all
targets' exact data or is unsure that certain targets are in the releaseddata.

To simplify calculations, we assumethe intruder matches only one target at a time or, equivalently ,
matches with replacement. The intruder who matches without replacement may be able to increaseiden-
ti�cation probabilities relative to with-replacement matching, especially when there is a one-to-onecorre-
spondencebetweenthe releasedand original data. On the other hand, this intruder could obtain many false
matcheswhen mismatchesearly in the processcausesubsequent attempted matchesto be incorrect.

The three measuresof global identi�cation risk consideredhere include (i) the number of units with
maximum probabilities exceedingan agency-speci�ed threshhold deemedtoo risky, (ii) the expectednumber
of true matches,and (iii) the number of units with unique true matches. The �rst measurereects perceived
matching risk rather than true matching risk, sincefor any particular target the releasedunit with the largest
probabilit y may not be its true match. For illustrativ e purposes,a probabilit y threshhold of :20 is used. For
the secondmeasure,let m j be the number of units whoseprobabilities equal the maximum probabilit y for
sometarget t j . Let I j = 1 if the correct match is among those m j units, and let I j = 0 otherwise. The
expected number of true matchesthen equals

P
j (1=mj )I j . When the correct match and somem j � 1 other

units all have the maximum probabilit y, 1=mj is added to the sum to reect the intruder randomly guessing
a match from the m j qualifying units. When the correct match's probabilit y is not the maximum, zero is
added to the expected match sum. The third measureequalsthe number of units with m j = I j = 1.

Using the samedata and methods described in Section 4.1 and 4.2, we apply theseglobal risk measures
when A = f X ; R; M ; Gg and when A = f X ; R; M ; G; Pg. The results are summarized in Table 6. When P
is not known, agerecoding is more e�ectiv e than the swapping of race and marital status. There remain 43
units that can be uniquely and correctly identi�ed even when employing both age recodes and the swaps.
This number could be reducedby judicious data swapping, for examplemaking sure to include in swaps the
96 units with unique correct matchesafter agerecoding.

Knowledgeof P greatly increasesthe disclosurerisk associated with any strategy. This is becausemany
units have unique combinations when P is included. Here, data swapping provides relatively little extra
protection from identit y disclosures,even after agesare recoded. Perturbing P helps dramatically because
it intro ducesuncertainty in matches. Nonetheless,intruders can be expected to make a large number of
matches.

Of the 1573correct, unique matches,655 recordshave P > 3; 000. To reducerisks for these records,we
considera topcode of w = 3; 000 for P in addition to adding constrained random noisewhen P � 3000,as
described at the end of Section4.2. We note that topcoding at w = 3; 000without adding noiseis ine�ectiv e,
since11,205of the 12,739unique matchesafter recoding and swapping are for recordswith P < 3000. The
topcode e�ectiv ely reducesrisk for the records with P > 3; 000: of the 914 unique, correct matches, only
44 have property taxes above $3,000. There are 816 unique, correct matches belonging to records whose
property taxes are altered by random noise. To reducerisks for theserecords,the agencycould lower the w,
create other categoriesof property taxes, or increasethe amount of random noise. However, these courses
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Table 6: Global identi�cation risks for when A = f X ; R; M ; Gg or A = f X ; R; M ; G; Pg. Entries are number
of records. The topcode for property tax is set at $3,000.

Prob. > :2 Expected matches Unique matches
Strategy no P P known no P P known no P P known
No SDL 2102 31175 2192 26839 521 21750
Age recode 496 22878 622 18747 96 13746
RM swap 143 31484 1292 24748 264 23891
Age recode + RM swap 8 21905 337 16801 43 12739
Age recode + RM swap + P perturb 8 1164 337 1854 43 1573
Age recode + RM swap + P perturb/top code 8 267 337 1307 43 914

of action decreasethe utilit y of the data. At somepoint, further data alteration doesnot appreciably lower
risks and may not be worth the accompanying reductions in data utilit y.

5 CONCLUDING REMARKS

Identi�cation probabilities have many positive features as a measureof disclosurerisk. Identi�cation prob-
abilities allow agenciesto assessdisclosurerisks under di�eren t assumptionson the amount of information
possessedby intruders. Agenciescan determine which units have probabilities large enough to constitute
identi�cation disclosurethreats, then take action to reducethose probabilities. The reductions in probabili-
ties can be usedto gaugethe e�ectiv enessof competing disclosurelimitation strategies.

The simulations in this article illustrate thesefeatures. For example,the results indicate that agerecoding
improvesprotection more e�ectiv ely than random data swapping for thesedata, and that intruders who know
property tax valuescan achieve substantially higher identi�cation probabilities, including a large number of
unique true matches. Perturbation of tax values reducesthese probabilities, but targets with unusual tax
values remain at risk. These risks can be reducedby topcoding property taxes, along with adding noise to
valuesbelow the cutpoint.

Identi�cation probabilities also can feed into measuresof attribute risk, which is the risk associated
with learning particular sensitive values. Attribute risk can be assessedusing decisiontheoretic approaches
(Duncan and Lambert, 1989;Lambert, 1993;Trottini and Fienberg, 2002), which require specifying models
for intruders' guessesabout sensitive values and loss functions for those guesses.The intruder might esti-
mate someyk for a particular target t with a probabilit y-weighted averageof the releasedattribute values,P

j zj k Pr (J = j jt ; Z). Alternativ ely, the intruder who knows that an attribute has been perturb ed, and
knows the perturbation method, can replacethe zj k with estimatesderived from measurement error models.
To be conservative, it is advisablefor the agencyto assumethe intruder knows any methods of perturbation
(although not the information neededto reveal the original values)andcan �t asgood a predictive model for
target valuesaspossibleusing the original data. The speci�cation of the lossfunction dependson the context
of the data set and disclosurerisks. For example,simply knowing an income exceedsa certain amount may
constitute an attribute disclosure, in which casea suitable loss function equals one if the intruder's guess
exceedsthat amount and equalszero otherwise (Lambert, 1993). For somevariables, especially categorical
ones,agenciescan usea lossfunction equal to one when the intruder's guessequalsthe target value exactly
and equal to zero otherwise. For other variables, such as numerical or ordinal attributes, agenciesmight use
quadratic or absolute loss functions. It is prudent to evaluate more than one loss function under a variety
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of estimation methods.
Di�eren t typesof identit y and attribute disclosurescan have di�eren t coststo the agency. For example,

identi�cation disclosureswith attribute disclosuresmay be more harmful to the agency than identi�cation
disclosuresalone. Or, it may be more costly to the agency, and the sampledindividuals, if the intruder learns
the identit y and attributes of a personwho is HIV-p ositive than if the intruder learns about a person who
is HIV-negativ e. Lambert (1993) suggeststhat agenciesattach costs to all types of disclosuresto quantify
overall harm to the agency. Such overall harm analyseshave not appearedin the literature for genuine data
sets,although they may be done informally by agencies.

Identi�cation or attribute disclosurerisks attached to certain disclosurelimitation strategies needto be
weighed against the utilit y of the releaseddata. Duncan et al. (2001) suggestdeveloping formal measures
of data utilit y and plotting the values of risk versus utilit y for candidate disclosure limitation strategies.
Agenciesthen select the strategy yielding the greatest utilit y for an acceptableamount of disclosure risk.
Utilit y measuresare di�cult to construct, and many have been proposed. Someare basedon squared or
absolute di�erences in the sample means and covariance matrices between the releasedand original data
(Duncan et al., 2001; Domingo-Ferrer and Torra, 2001; Yancey et al., 2002). Others are basedon entropy
measures(Willen borg and de Waal, 2001). A drawback of thesemeasuresis their failure to account for the
accuracyof inferencesbasedon the releaseddata. For example, thesemeasuresdo not reect the properties
of con�dence intervals made from the releaseddata. Further research on measuresof data utilit y is a high
priorit y item on the disclosurelimitation research agenda.

Finally, the methods usedhere assumesophisticated intruders who attempt to quantify all uncertainties
about matching. However, intruders using naive matching strategies{for instance, treating swapped data as
if they are unaltered values{may be able to match somerecordsmore e�ectiv ely than sophisticatedintruders.
It is therefore prudent for agenciesto evaluate risks under both sophisticated and naive strategies.
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