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The Underlying Problem

o A test for

— Hy: arbitrary model with a known background rate of

occurreince.

— Hi: A spike or pulse is superimposed on this background

rate.




Data Collection Scenarios

1. Continuous

e the time of each occurrence is reported on a continuous

scale.

2. Grouped

e For each of 1" disjoint intervals, the number of occurrences

during each interval is reported.

3. Binary

e for each of T trials, it is reported if an event occurs or not




Temporal Scan Statistics

1. Continuous Data
Continuous scan statistic: S,, = max number of events in a
window of length w
2. Grouped Data
Ratchet-scan statistic: S, = max number of events in w
consecutive intervals
3. Binary Data

Binary scan statistic: S,, = max number of events in w

consecutive trials




Data Processing Scenarios

a. Prospective (Real Time)

— P{type I error in any interval of length T'} = «

b. Retrospective (Batch)

— P{type I error over the review period} = «




Our Focus

e We will focus on scenario 2 a.
— Prospective processing of grouped data

— Only temporal, not spatio-temporal like Kulldorft’s paper

e The following approaches will be presented

— P-scan
— GLRT
— CUSUM




Statement of the Problem

Assume for the moment that we are only interested in the first

T intervals.
Let U; be the number of events in the it interval.

Assume U; ~ Poisson(\;)

Hy: )\i:)\go) for:=1,...,7T

H1: )\izﬁ)\()fori:b—w+1,...,b

1

A, = )\(O) otherwise

7

— where )\Z(O) is known for all 7.

This is what’s called the pulse alternative.




Statement of the Problem

e This differs from Kulldorft’s Setup slightly

e Kulldorff’s setup would be U; ~ Poisson(\;)

Hy: \j=pu; tore=1,...,T
H1: )\i:q,uz- fori:b—w+1,...,b
Ai = pu; otherwise

— where p; is known for all 7, but p is an unknown nuisance

parameter.




P-Scan

w
o Let Y (w)= > U;_y; which is the observed number of events
i=1
in the consecutive intervals t —w + 1,t —w + 2,...,t, for

t=w,...,T

w
o Let Fiy(w) = ) A—_wii be the expected number of events in
i=1
these intervals.




P-Scan

e For the constant background case, )\2(0) = A0 for all 7,

— the GLRT is to reject Hy for large values of the ratchet-scan
statistic, Sy, = maxy{Y;(w)}

— The p-value for this constant background case is denoted
P(k; A, w,T) = P(Sw = k[ A)

e Simple approximations for this quantity are available (i.e. no

simulation required)
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P-Scan

e The P-scan approach works as follows
— For each observed Y;(w) compute P(Y(w), Et(w),w,T)

— The P-scan statistic is

PSS = mtin{P(Y}, Ey,w,T)}

— Reject Hy it PSS < «
— Equivalently if for any ¢t P(Y;, By, w,T) < «

This procedure will keep the overall type I error rate at a,
P{PSS < a| Hp} < a. Proof given in Appendix.

11



Mid-p-value

e (Consider a randomized test based on a discrete valued test

statistic.

That is, suppose we are to reject Hy for large values of k which

is the observed value of the discrete random variable K.

e Then we would reject Hy if:
P(K > k| Hy) <«
OR P(K>k+1|Hy) <a<P(K>k|Hy) and U < f
— where U ~ U(0, 1) independent of K and

a— P(K(X)>k+1| Hp)
P(K > k| Hy) — P(K > k+1| Hy)

f=

e Under this strategy P(type I error) = a.
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Mid-p-value and P-scan

e The randomized P-scan test would be to sound an alarm if for

any t
P(thaEtawaT) SOZ
OR PY;+ 1, E,w,T) <a< P, B,w,T) and U < f where

a—PY;+1,E,w,T)
P(thaEtawaT) T P()/t + 17Et7w7T)

f=
e Randomized tests have the unfavorable result that two

researchers could get different answers from the same data.

e The mid-p-value approach would be to sound an alarm if for

any t, f > 0.5 or equivalently if for any ¢

P(Y; + 1, Ep,w,T) + P(Y, B, w, T)]/2 < a
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GLRT

e The likelihood is

T
L(A;u) = H Alie™ N [y,
i=1

— where u; is the observed number of events in the i interval.

e which makes for a GLR of

b

II;%X i_;+1{ui 1og9 — )\Z(H — 1)}
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GLRT

e LFor a given b, the max occurs at

0y = Yy(w)/Ep(w)

e This leads to a GLRT that rejects for large values of

G(w) = max{Yy(w) log[Yy(w)/ Ep(w)] — [Ys(w)/Ep(w)]}-

e Notes

— If the alternative hypothesis was additive instead of

multiplicative, the GLRT would stay the same

— If the value of w is unknown, but is known to be in the
range u < w < v, then the GLRT test statistic is G(w)

maximized over the values of w in that range.
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GLRT
e The GLRT for the Kulldorft Setup is slightly different,

max{Yy(w) log|Yy(w)/Ep(w)] +

(N =Yy (w)) log[(N — Yy(w))/(N — Ep(w))]}-

— where N = number of events in [0, 7.

— The dependency on NV is introduced by the fact that p is
)

free in his specification of )\Z(O = DU;,
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CUSUM

e Variant of CUSUM where the quantity being summed is the
same quantity on which the GLRT is based.

C(t) = max[0, C(t — 1) +1og(Y;(1)/Ar) — (Ye(1)/Ae)]

e Sound alarm if C(t) > h where h is determined by

P<max C(t)Zh\Ho):oz

0<t<T




Simulation Results

e Under the null it is assumed that U; ~ Poisson(\;) where

A =+ Bt fort=1,...,52

e For these type I error results below, v = 2 and 8 = 0.06.

w\ae | .01 .05 .10 .20 .30
3 1.010 .046 .099 .185 .288
o | .010 .047 .096 .189 .285

Table 1: Observed Type I Error Rates for P-Scan
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Simulation Results

e Under the alternative

A\ = 2+ 0.06t + 6 + 6(t — 20)

for intervals 20 to 20 4+ v — 1.

e For each of the cases in the table, the expected number of
excess events was kept constant at 15.

e Notice
— setting 6 = 0 gives a pulse alternative.

— setting 6 > 0 gives a gradual increase over time.

19



Simulation Results

PSS(w) Gw) G(w—1) G(max)* CUSUM
.890 .890 935 921 900
85D .856 7194 828 836
853 .854 789 831 837
848 .848 .800 .840 837
858 .859 834 867 857
.868 .869 .880 900 877

Table 2: Power of detecting an excess of 15 expected cases over v
intervals when T' = 52, Ay = 2+ 0.06¢t + 6 + 6(t — 21) for
20<t<20+v—1.

* G(max) = max|G(w — 2), G(w — 1), G(w)].




Simulation Results

PSS(w) Gw) Gw—1) G(max)* CUSUM
754 756 713 762 796
670 670 611 641 715
095 596 .H26 D58 673
74 795 810 852 822
187 808 827 .863 837
157 761 799 805 791
724 128 691 698 .686
725 128 692 711 .692
133 739 743 740 726
756 17 78 7D 762

1
3
D
3
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Simulation Results

e As expected PSS(w) and G(w) are best when v = w and 6 =0

e CUSUM is preferable when v # w or when 6 is large relative to

6 (i.e. a ramp-like increase).

e When v < w, G(max) was always the best method.

— However when v > w, G(max) has the poorest performance

of any method.

— It seems that the best strategy is to use G(max) and make

sure we include the correct value of w in the search.

— What is the breaking point of this strategy?

(i.e. too much flexibility will result in loss of power.)
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Future Directions for Scan Statistics

e Generalize the background rate, A(z,y,t), to be a random

process, A(x,y,t,w).

— Each year has a different flu season spatially and temporally.

— Allow the A(x,y,t) to be a latent variable that looks similar
from year to year, but is not the same.

e Generalize GLRT alternatives (w.r.t. the spatio-temporal

framework)

— Kulldorff assumes a rate increase inside of a cylinder in
space-time.

— How about an elliptical cylinder or an ellipsoid alternative?

23



