Temporal Surveillance Using Scan Statistics

Joseph Naus and Sylvan Wallenstein

presented by Curtis Storlie

The Underlying Problem

- A test for
 - H_0 : arbitrary model with a known background rate of occurrence.
 - H_1 : A spike or pulse is superimposed on this background rate.

Data Collection Scenarios

- 1. Continuous
 - the time of each occurrence is reported on a continuous scale.
- 2. Grouped
 - For each of T disjoint intervals, the number of occurrences during each interval is reported.
- 3. Binary
 - for each of T trials, it is reported if an event occurs or not

Temporal Scan Statistics

1. Continuous Data

Continuous scan statistic: $S_w = \max$ number of events in a window of length w

2. Grouped Data

Ratchet-scan statistic: $S_w = \max$ number of events in w consecutive intervals

3. Binary Data

Binary scan statistic: $S_w = \max$ number of events in w consecutive trials

Data Processing Scenarios

- a. Prospective (Real Time)
 - $P\{\text{type I error in any interval of length } T\} = \alpha$
- b. Retrospective (Batch)
 - $P\{\text{type I error over the review period}\} = \alpha$

Our Focus

- We will focus on scenario 2 a.
 - Prospective processing of grouped data
 - Only temporal, not spatio-temporal like Kulldorff's paper
- The following approaches will be presented
 - P-scan
 - GLRT
 - CUSUM

Statement of the Problem

- Assume for the moment that we are only interested in the first *T* intervals.
- Let U_i be the number of events in the i^{th} interval.
- Assume $U_i \sim \text{Poisson}(\lambda_i)$

$$H_0: \ \lambda_i = \lambda_i^{(0)} \text{ for } i = 1, \dots, T$$
$$H_1: \ \lambda_i = \theta \lambda_i^{(0)} \text{ for } i = b - w + 1, \dots, b$$
$$\lambda_i = \lambda_i^{(0)} \text{ otherwise}$$
$$- \text{ where } \lambda_i^{(0)} \text{ is known for all } i.$$

• This is what's called the pulse alternative.

Statement of the Problem

- This differs from Kulldorff's Setup slightly
- Kulldorff's setup would be $U_i \sim \text{Poisson}(\lambda_i)$

$$H_0: \lambda_i = p\mu_i \text{ for } i = 1, \dots, T$$

$$H_1: \ \lambda_i = q\mu_i \text{ for } i = b - w + 1, \dots, b$$
$$\lambda_i = p\mu_i \text{ otherwise}$$

- where μ_i is known for all *i*, but *p* is an unknown nuisance parameter.

P-Scan

- Let $Y_t(w) = \sum_{i=1}^w U_{t-w+i}$ which is the observed number of events in the consecutive intervals $t - w + 1, t - w + 2, \dots, t$, for $t = w, \dots, T$
- Let $E_t(w) = \sum_{i=1}^{w} \lambda_{t-w+i}$ be the expected number of events in these intervals.

P-Scan

- For the constant background case, $\lambda_i^{(0)} = \lambda^{(0)}$ for all i,
 - the GLRT is to reject H_0 for large values of the ratchet-scan statistic, $S_w = \max_t \{Y_t(w)\}$
 - The p-value for this constant background case is denoted

$$P(k;\lambda,w,T) = P(S_w \ge k \mid \lambda)$$

• Simple approximations for this quantity are available (i.e. no simulation required)

P-Scan

- The P-scan approach works as follows
 - For each observed $Y_t(w)$ compute $P(Y_t(w), E_t(w), w, T)$
 - The P-scan statistic is

$$PSS = \min_{t} \{ P(Y_t, E_t, w, T) \}$$

- Reject H_0 if $PSS \leq \alpha$
- Equivalently if for any $t P(Y_t, E_t, w, T) \leq \alpha$
- This procedure will keep the overall type I error rate at α , $P\{PSS \leq \alpha \mid H_0\} \leq \alpha$. Proof given in Appendix.

Mid-p-value

- Consider a randomized test based on a discrete valued test statistic.
- That is, suppose we are to reject H_0 for large values of k which is the observed value of the discrete random variable K.
- Then we would reject H_0 if:

 $P(K \ge k \mid H_0) \le \alpha$

OR $P(K \ge k+1 \mid H_0) \le \alpha < P(K \ge k \mid H_0)$ and $U \le f$

- where $U \sim U(0, 1)$ independent of K and

$$f = \frac{\alpha - P(K(X) \ge k + 1 \mid H_0)}{P(K \ge k \mid H_0) - P(K \ge k + 1 \mid H_0)}$$

• Under this strategy $P(\text{type I error}) = \alpha$.

Mid-p-value and P-scan

• The randomized P-scan test would be to sound an alarm if for any t

 $P(Y_t, E_t, w, T) \leq \alpha$ OR $P(Y_t + 1, E_t, w, T) \leq \alpha < P(Y_t, E_t, w, T)$ and $U \leq f$ where $f = \frac{\alpha - P(Y_t + 1, E_t, w, T)}{P(Y_t, E_t, w, T) - P(Y_t + 1, E_t, w, T)}$

- Randomized tests have the unfavorable result that two researchers could get different answers from the same data.
- The mid-p-value approach would be to sound an alarm if for any $t, f \ge 0.5$ or equivalently if for any t

 $[P(Y_t + 1, E_t, w, T) + P(Y_t, E_t, w, T)]/2 \le \alpha$

<u>GLRT</u>

• The likelihood is

$$L(\boldsymbol{\lambda};\boldsymbol{u}) = \prod_{i=1}^{T} \lambda_{i}^{u_{i}} e^{-\lambda_{i}} / u_{i}!$$

- where u_i is the observed number of events in the i^{th} interval.

• which makes for a GLR of

$$\max_{b,\theta} \sum_{i=b-w+1}^{b} \{u_i \log \theta - \lambda_i(\theta - 1)\} = \max_{b,\theta} \{Y_b(w) \log \theta - E_b(w)(\theta - 1)\}$$

GLRT

• For a given b, the max occurs at

$$\hat{\theta}_b = Y_b(w) / E_b(w)$$

• This leads to a GLRT that rejects for large values of

$$G(w) = \max_{b} \{Y_{b}(w) \log[Y_{b}(w)/E_{b}(w)] - [Y_{b}(w)/E_{b}(w)]\}.$$

- Notes
 - If the alternative hypothesis was additive instead of multiplicative, the GLRT would stay the same
 - If the value of w is unknown, but is known to be in the range $u \leq w \leq v$, then the GLRT test statistic is G(w) maximized over the values of w in that range.

<u>GLRT</u>

• The GLRT for the Kulldorff Setup is slightly different,

$$G(w) = \max_{b} \{Y_{b}(w) \log[Y_{b}(w)/E_{b}(w)] + (N - Y_{b}(w)) \log[(N - Y_{b}(w))/(N - E_{b}(w))]\}.$$

- where N = number of events in [0, T].
- The dependency on N is introduced by the fact that p is free in his specification of $\lambda_i^{(0)} = p\mu_i$,

CUSUM

• Variant of CUSUM where the quantity being summed is the same quantity on which the GLRT is based.

 $C(t) = \max[0, C(t-1) + \log(Y_t(1)/\lambda_t) - (Y_t(1)/\lambda_t)]$

• Sound alarm if C(t) > h where h is determined by

$$P\left(\max_{0\leq t\leq T}C(t)\geq h\mid H_0\right)=\alpha$$

• Under the null it is assumed that $U_t \sim \text{Poisson}(\lambda_t)$ where

$$\lambda_t = \gamma + \beta t$$
 for $t = 1, \dots, 52$

• For these type I error results below, $\gamma = 2$ and $\beta = 0.06$.

$w \land \alpha$.01	.05	.10	.20	.30
3	.010	.046	.099	.185	.288
5	.010	.047	.096	.189	.285

Table 1: Observed Type I Error Rates for P-Scan

• Under the alternative

$$\lambda_t = 2 + 0.06t + \delta + \theta(t - 20)$$

for intervals 20 to 20 + v - 1.

- For each of the cases in the table, the expected number of excess events was kept constant at 15.
- Notice
 - setting $\theta = 0$ gives a pulse alternative.
 - setting $\theta > 0$ gives a gradual increase over time.

w	v	δ	θ	PSS(w)	G(w)	G(w-1)	$G(max)^*$	CUSUM
3	2	5	5	.890	.890	.935	.921	.900
3	3	5	0	.855	.856	.794	.828	.836
3	3	4	1	.853	.854	.789	.831	.837
3	3	3	2	.848	.848	.800	.840	.837
3	3	2	3	.858	.859	.834	.867	.857
3	3	1	4	.868	.869	.880	.900	.877

Table 2: Power of detecting an excess of 15 expected cases over vintervals when T = 52, $\lambda_t = 2 + 0.06t + \delta + \theta(t - 21)$ for $20 \le t \le 20 + v - 1$.

* $G(max) = \max[G(w-2), G(w-1), G(w)].$

w	v	δ	θ	PSS(w)	G(w)	G(w-1)	$G(max)^*$	CUSUM
3	4	1.5	1.5	.754	.756	.713	.762	.796
3	5	1	1	.670	.670	.611	.641	.715
3	5	3	0	.595	.596	.526	.558	.673
5	3	5	0	.774	.795	.810	.852	.822
5	3	3	2	.787	.808	.827	.863	.837
5	4	1.5	1.5	.757	.761	.795	.805	.791
5	5	3	0	.724	.728	.691	.698	.686
5	5	2	0.5	.725	.728	.692	.711	.692
5	5	1	1	.733	.735	.743	.740	.726
5	5	0.5	1.25	.756	.757	.778	.775	.762

- As expected PSS(w) and G(w) are best when v = w and $\theta = 0$
- CUSUM is preferable when $v \neq w$ or when θ is large relative to δ (i.e. a ramp-like increase).
- When v < w, $G(\max)$ was always the best method.
 - However when v > w, $G(\max)$ has the poorest performance of any method.
 - It seems that the best strategy is to use $G(\max)$ and make sure we include the correct value of w in the search.
 - What is the breaking point of this strategy?(i.e. too much flexibility will result in loss of power.)

Future Directions for Scan Statistics

- Generalize the background rate, $\lambda(x, y, t)$, to be a random process, $\lambda(x, y, t, \omega)$.
 - Each year has a different flu season spatially and temporally.
 - Allow the $\lambda(x, y, t)$ to be a latent variable that looks similar from year to year, but is not the same.
- Generalize GLRT alternatives (w.r.t. the spatio-temporal framework)
 - Kulldorff assumes a rate increase inside of a cylinder in space-time.
 - How about an elliptical cylinder or an ellipsoid alternative?