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The Underlying Problem

• A test for

– H0: arbitrary model with a known background rate of

occurrence.

– H1: A spike or pulse is superimposed on this background

rate.
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Data Collection Scenarios

1. Continuous

• the time of each occurrence is reported on a continuous

scale.

2. Grouped

• For each of T disjoint intervals, the number of occurrences

during each interval is reported.

3. Binary

• for each of T trials, it is reported if an event occurs or not
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Temporal Scan Statistics

1. Continuous Data

Continuous scan statistic: Sw = max number of events in a

window of length w

2. Grouped Data

Ratchet-scan statistic: Sw = max number of events in w

consecutive intervals

3. Binary Data

Binary scan statistic: Sw = max number of events in w

consecutive trials
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Data Processing Scenarios

a. Prospective (Real Time)

– P{type I error in any interval of length T} = α

b. Retrospective (Batch)

– P{type I error over the review period} = α
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Our Focus

• We will focus on scenario 2 a.

– Prospective processing of grouped data

– Only temporal, not spatio-temporal like Kulldorff’s paper

• The following approaches will be presented

– P-scan

– GLRT

– CUSUM
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Statement of the Problem

• Assume for the moment that we are only interested in the first

T intervals.

• Let Ui be the number of events in the ith interval.

• Assume Ui ∼ Poisson(λi)

H0: λi = λ
(0)
i for i = 1, . . . , T

H1: λi = θλ
(0)
i for i = b − w + 1, . . . , b

λi = λ
(0)
i otherwise

– where λ
(0)
i is known for all i.

• This is what’s called the pulse alternative.
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Statement of the Problem

• This differs from Kulldorff’s Setup slightly

• Kulldorff’s setup would be Ui ∼ Poisson(λi)

H0: λi = pµi for i = 1, . . . , T

H1: λi = qµi for i = b − w + 1, . . . , b

λi = pµi otherwise

– where µi is known for all i, but p is an unknown nuisance

parameter.
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P-Scan

• Let Yt(w) =
w
∑

i=1
Ut−w+i which is the observed number of events

in the consecutive intervals t − w + 1, t − w + 2, . . . , t, for

t = w, . . . , T

• Let Et(w) =
w
∑

i=1
λt−w+i be the expected number of events in

these intervals.

9



P-Scan

• For the constant background case, λ
(0)
i = λ(0) for all i,

– the GLRT is to reject H0 for large values of the ratchet-scan

statistic, Sw = maxt{Yt(w)}

– The p-value for this constant background case is denoted

P (k;λ,w, T ) = P (Sw ≥ k | λ)

• Simple approximations for this quantity are available (i.e. no

simulation required)

10



P-Scan

• The P-scan approach works as follows

– For each observed Yt(w) compute P (Yt(w), Et(w), w, T )

– The P-scan statistic is

PSS = min
t
{P (Yt, Et, w, T )}

– Reject H0 if PSS ≤ α

– Equivalently if for any t P (Yt, Et, w, T ) ≤ α

• This procedure will keep the overall type I error rate at α,

P{PSS ≤ α | H0} ≤ α. Proof given in Appendix.
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Mid-p-value

• Consider a randomized test based on a discrete valued test

statistic.

• That is, suppose we are to reject H0 for large values of k which

is the observed value of the discrete random variable K.

• Then we would reject H0 if:

P (K ≥ k | H0) ≤ α

OR P (K ≥ k + 1 | H0) ≤ α < P (K ≥ k | H0) and U ≤ f

– where U ∼ U(0, 1) independent of K and

f =
α − P (K(X) ≥ k + 1 | H0)

P (K ≥ k | H0) − P (K ≥ k + 1 | H0)

• Under this strategy P (type I error) = α.
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Mid-p-value and P-scan

• The randomized P-scan test would be to sound an alarm if for

any t

P (Yt, Et, w, T ) ≤ α

OR P (Yt + 1, Et, w, T ) ≤ α < P (Yt, Et, w, T ) and U ≤ f where

f =
α − P (Yt + 1, Et, w, T )

P (Yt, Et, w, T ) − P (Yt + 1, Et, w, T )

• Randomized tests have the unfavorable result that two

researchers could get different answers from the same data.

• The mid-p-value approach would be to sound an alarm if for

any t, f ≥ 0.5 or equivalently if for any t

[P (Yt + 1, Et, w, T ) + P (Yt, Et, w, T )]/2 ≤ α
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GLRT

• The likelihood is

L(λ;u) =
T

∏

i=1

λui

i e−λi/ui!

– where ui is the observed number of events in the ith interval.

• which makes for a GLR of

max
b,θ

b
∑

i=b−w+1

{ui log θ − λi(θ − 1)} =

max
b,θ

{Yb(w) log θ − Eb(w)(θ − 1)}
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GLRT

• For a given b, the max occurs at

θ̂b = Yb(w)/Eb(w)

• This leads to a GLRT that rejects for large values of

G(w) = max
b

{Yb(w) log[Yb(w)/Eb(w)] − [Yb(w)/Eb(w)]}.

• Notes

– If the alternative hypothesis was additive instead of

multiplicative, the GLRT would stay the same

– If the value of w is unknown, but is known to be in the

range u ≤ w ≤ v, then the GLRT test statistic is G(w)

maximized over the values of w in that range.
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GLRT

• The GLRT for the Kulldorff Setup is slightly different,

G(w) = max
b

{Yb(w) log[Yb(w)/Eb(w)] +

(N − Yb(w)) log[(N − Yb(w))/(N − Eb(w))]}.

– where N = number of events in [0, T ].

– The dependency on N is introduced by the fact that p is

free in his specification of λ
(0)
i = pµi,
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CUSUM

• Variant of CUSUM where the quantity being summed is the

same quantity on which the GLRT is based.

C(t) = max[0, C(t − 1) + log(Yt(1)/λt) − (Yt(1)/λt)]

• Sound alarm if C(t) > h where h is determined by

P

(

max
0≤t≤T

C(t) ≥ h | H0

)

= α
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Simulation Results

• Under the null it is assumed that Ut ∼ Poisson(λt) where

λt = γ + βt for t = 1, . . . , 52

• For these type I error results below, γ = 2 and β = 0.06.

w\α .01 .05 .10 .20 .30

3 .010 .046 .099 .185 .288

5 .010 .047 .096 .189 .285

Table 1: Observed Type I Error Rates for P-Scan
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Simulation Results

• Under the alternative

λt = 2 + 0.06t + δ + θ(t − 20)

for intervals 20 to 20 + v − 1.

• For each of the cases in the table, the expected number of

excess events was kept constant at 15.

• Notice

– setting θ = 0 gives a pulse alternative.

– setting θ > 0 gives a gradual increase over time.
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Simulation Results

w v δ θ PSS(w) G(w) G(w − 1) G(max)∗ CUSUM

3 2 5 5 .890 .890 .935 .921 .900

3 3 5 0 .855 .856 .794 .828 .836

3 3 4 1 .853 .854 .789 .831 .837

3 3 3 2 .848 .848 .800 .840 .837

3 3 2 3 .858 .859 .834 .867 .857

3 3 1 4 .868 .869 .880 .900 .877

Table 2: Power of detecting an excess of 15 expected cases over v

intervals when T = 52, λt = 2 + 0.06t + δ + θ(t − 21) for

20 ≤ t ≤ 20 + v − 1.

* G(max) = max[G(w − 2), G(w − 1), G(w)].
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Simulation Results

w v δ θ PSS(w) G(w) G(w − 1) G(max)∗ CUSUM

3 4 1.5 1.5 .754 .756 .713 .762 .796

3 5 1 1 .670 .670 .611 .641 .715

3 5 3 0 .595 .596 .526 .558 .673

5 3 5 0 .774 .795 .810 .852 .822

5 3 3 2 .787 .808 .827 .863 .837

5 4 1.5 1.5 .757 .761 .795 .805 .791

5 5 3 0 .724 .728 .691 .698 .686

5 5 2 0.5 .725 .728 .692 .711 .692

5 5 1 1 .733 .735 .743 .740 .726

5 5 0.5 1.25 .756 .757 .778 .775 .762
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Simulation Results

• As expected PSS(w) and G(w) are best when v = w and θ = 0

• CUSUM is preferable when v 6= w or when θ is large relative to

δ (i.e. a ramp-like increase).

• When v < w, G(max) was always the best method.

– However when v > w, G(max) has the poorest performance

of any method.

– It seems that the best strategy is to use G(max) and make

sure we include the correct value of w in the search.

– What is the breaking point of this strategy?

(i.e. too much flexibility will result in loss of power.)
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Future Directions for Scan Statistics

• Generalize the background rate, λ(x, y, t), to be a random

process, λ(x, y, t, ω).

– Each year has a different flu season spatially and temporally.

– Allow the λ(x, y, t) to be a latent variable that looks similar

from year to year, but is not the same.

• Generalize GLRT alternatives (w.r.t. the spatio-temporal

framework)

– Kulldorff assumes a rate increase inside of a cylinder in

space-time.

– How about an elliptical cylinder or an ellipsoid alternative?
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