Introduction to Sequential Change-Point Problems

Yajun Mei ymei@fhcrc.org

SAMSI September 29, 2005

Outline

- Example: Nile River
- Sequential Change-Point Problems
 Minimax Formulation
 Bayesian Formulation
- Generalizations

Nile River (1871-1970)

Cobb (Biometrika, 1978)

Applications

- Quality / Process control
- Epidemiology
- Signal processing
- Finance
- Surveillance / Security
- Others ?

Change-Point Problem Formulation

- <u>Goal:</u> Raise an alarm as soon as a change occurs
- A procedure is defined as a stopping time T

($T < \infty \longrightarrow$ declare a change has occurred)

Minimax Formulation

• **Detection Delay:**

$$D(T) = \sup_{1 \le \nu < \infty} \mathbf{E}[\mathbf{T} - \nu | \mathbf{T} \ge \nu]$$

- False Alarm Rate:
 - Can P(ever raise a false alarm) ≤ 5%?
 No! Lorden (*Ann. Math. Stat.*, 1971) showed:
 D(T) is finite → P(raise a false alarm) = 1
 - Usually measured by $1/{\rm E}_f[{\rm T}]$, where ${\rm E}_f[{\rm T}]$ is Mean Time until a False Alarm (MTFA)

An Instructive Example

Before Change (B. C.), X_i's are i.i.d. N(0, 1) After Disorder (A. D.), X_i's are i.i.d. N(1, 1)

<u>Problem:</u> Minimize detection delay D(T) subject to MTFA $\geq \gamma$ (e.g., =100)

• CUSUM procedure (Page (1954))

 T_{CM} = first n such that $W_n \ge 2.85$, where

 $W_n = \max_{1 \le k \le n} \sum_{i=k}^n (X_i - 0.5) \quad [= \max\{0, W_{n-1}\} + (X_n - 0.5)]$

• T_{CM} is (nearly) optimal: D(T_{CM}) \approx 6.1

Page's CUSUM Procedures

- Given X_1, \dots, X_n , the log-likelihood ratio of $H_0: \nu = \infty$ vs. $H_{1,k}: \nu = k$ is $\sum_{i=k}^n \log \frac{g(X_i)}{f(X_i)}$
- CUSUM statistics is Maximum Likelihood Ratio

$$W_n = \max_{1 \le k \le n} \sum_{i=k}^n \log \frac{g(X_i)}{f(X_i)}$$

- Page's CUSUM = first n such that $W_n \ge a$
- (Asymptotic) optimality: (Lorden 1971, Moustakides, 1986)

Bayesian Formulation

- The change-point ν is a random variable with a known prior distribution
- **Problem:** Minimize $P_f(T < \nu) + cE(T \nu)^+$ where c >0 is a pre-observation cost of delay.
- <u>Solution</u>: If the prior for v is geometric(p), Bayes rule is

 $T_{p,c} = first n such that$

 $\mathsf{P}(\nu \leq n \mid \mathbf{X}_1, \cdots, \mathbf{X}_n) \geq \delta_{\mathbf{p}, \mathbf{c}}$

Shiryeyev-Roberts Procedures

• Shiryayev-Roberts = first n such that $R_n \ge A$

$$R_n = \sum_{k=1}^n \prod_{i=k}^n \frac{g(X_i)}{f(X_i)}$$

- It is the limit of Bayes rules as $\mathbf{p} \to \mathbf{0}$
- Minimax optimality (Pollak, 1985)

Page's CUSUM & Shiryayev-Roberts

CUSUM statistic:

$$W_n = \max_{1 \le k \le n} \prod_{i=k}^n \frac{g(X_i)}{f(X_i)} = \max(W_{n-1}, 1) \frac{g(X_n)}{f(X_n)}$$

• Shiryayev-Roberts statistic:

$$R_n = \sum_{k=1}^n \prod_{i=k}^n \frac{g(X_i)}{f(X_i)} = (R_{n-1} + 1) \frac{g(X_n)}{f(X_n)}$$

• Their performances are similar under minimax criteria

Generalizations

- Pre-change and/or post-change distributions involve unknown parameters (Lorden 1971; Pollak 1987; Pollak & Siegmund 1991; Lai 1995; Yakir 1998; Gordon & Pollak 1997; Baron 2000; Mei 2003; Krieger, Pollak & Yakir 2003;.....)
- Dependent observations; Hidden Markov (Lai 1998; Fuh 2003, 2004)
- Wiener process; Poisson process; Compound Poisson process (Shiryeyev 1978; Gal'chuk & Rozovkii 1971; Gapeev 2005)
- Exponential penalty for delay (Poor 1998; Beibel 2000)
- Joint detect & isolate changes (Nikiforov 1995; Lai 2000)
- Decentralized systems (Veeravalli 2001; Mei 2005)