Bonetti & Pagano (2005?). The interpoint distance distribution, ... disease clustering Statistics in Medicine.

Bahjat F. Qaqish (Bahjat_Qaqish@unc.edu)

The University of North Carolina at Chapel Hill

Basic Ideas

- \bullet n points (events, cases of disease) in a region S.
- Look at the n(n-1)/2 distances between points
- Compare the observed distribution to what would be expected under H_0
- If H_0 rejected, try to locate the cluster(s)

The continuous case (sec 2.1)

- n points X_1, \dots, X_n iid from a continuous density
- $F(d) := pr(||X_1 X_2|| \le d)$, where ||.|| is some norm.
- Borel (1925), Bartlett (1964): derived F for uniform points on the square and the circle. A lot more results from geometric probability are available.
- The empirical cumulative distribution function (ecdf):

$$F_n(d) := \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n I(||X_i - X_j|| \le d)$$

a V-statistic. This is for one point d.

- Being a mean, $F_n(d)$ converges to its expected value F(d). The quantities averaged are correlated, but not enough to hurt the consistency.
- For a finite fixed set of points $d = (d_1, \dots, d_m)$:

$$\sqrt{n}(F_n(d) - F(d))$$

converges in distribution to a multivariate Gaussian.

• For d > 0 the process

$$\sqrt{n}(F_n(d) - F(d))$$

converges weakly to a Gaussian process.

Stationary processes

Ripley's K function

$$K(d) = \frac{1}{\lambda}\mu(d)$$

where $\mu(d)$ is the expected number of events within distance d from an arbitrary event.

 $\lambda :=$ the intensity = the expected number of events per unit area

K(d) can be estimated for $d \leq$ half the maximum distance inside S.

The discrete case (sec 2.2)

Locations l_1, \dots, l_k (non-random)

Distances $d_{ij} := ||l_i - l_j||$

Probabilities p_1, \dots, p_k , sum to 1

Numbers of events (n_1, \dots, n_k) is multinomial with parameters (n, p)

D is the random distance between two independent events

D is discrete, and

$$pr(D = d_{ij}) = p_i p_j$$

The cumulative distribution function:

$$F_n(d;p) := \sum_{i=1}^k \sum_{j=1}^k p_i p_j I(d_{ij} \le d)$$

The empirical cumulative distribution function (ecdf):

$$F_n(d;\hat{p})$$

where $\hat{p_i} := \frac{n_i}{n}$.

Tests (sec 2.3)

 H_0 specifies p, and hence F(d;p).

Usually p is the observed distribution in non-cases, usually census data [could be model-based]

Fix a grid of points $d := (d_1, \dots, d_m)$.

Residuals (vector): $e := F_n(d) - F(d)$

Quadratic form: $\tilde{M} = e^{\top} \Sigma^{-} e^{-}$

 $\approx \chi_r^2$ for large n.

r is the rank of Σ .

Claim: $M = e^{\top} S^{-} e$ works better (in terms of the χ^2 approx.). No justification given

S is the sample covariance of e from 1000 resamples of size n with replacement [bootstrap?] [Resampling is not under H_0]

 f_n is a numerical derivative of F_n , an estimate of the density.

 F_n ia AN, so is f_n (linear combinations of F_n).

The distance $||f_n - f||$: L_2 norm χ^2 KL (E[log liklihood ratio])

Disease clustering (sec 3.1)

Figure 1, F_n for 1980 census $(n = 10^6)$ and 1978-1982 cases (n = 581)

- Centers $1, \dots, k$, and p_i = the population proportion Sum $(O E)^2/E$ Pearson's X^2 Geography plays no role
- Tango (1995) $y_i/n_i = \#\text{cases} / \#\text{subjects in region } i$

$$e_i := \frac{y_i}{y_{\cdot}} - \frac{n_i}{n_{\cdot}},$$

$$T = e^{\top} W e$$

a QF with respect to weights that depend on distance.

W is a weight matrix with $w_{ii} = 1$ and $w_{ij} = \exp(-d_{ij}/\alpha)$.

• Whittemore et al.(1987)

 δ = the mean distance between pairs of distinct points = the mean of n(n-1)/2 distances. Compare to the mean and variance under H_0 .

Upstate NY Data (sec 3.2)

Figure 2, f_n

 f_n has higher peaks than f at 0, 60 and 110 km.

p-values:

T: p = 0.000

DC: p = .944

 $\delta : p = 0.804$

Locating clusters

Score(i) defined for the ith location, such that it sums to M.

A lot of arbitrariness, but seems to detect a couple of clusters detected by other methods.

But Score(i) still involves a sum over all locations!

Comments

Moving all cases by rigid rotations, reflections and translation does not affect M.

Thus M detects whether the clustering of cases is similar to clustering in the general population, not that there is a clustering of cases in the sense of Kulldorf (areas of high incidence).

A lot of room for new ideas!