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Background

• Scan Statistic
• A tool to detect cluster in a Point Process
• Naus (1965 JASA) studied SS in one-dimension
• tests if a 1-dim point process is purely random

• Point Process
• Consider a time interval [a,b] and a window A=[t,t+w] of fixed

width w
• µ(A)= # of e-mails arrived in a time window A
• n(A) ≡ nA=# of junk mails = # of "points"
• Arrival times of junk e-mails define a "Point Process"
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Scope of Scan Statistic

Goal in data mining: cluster detection

• Regions of space where some quantity is significantly higher than
expected

• Detect disease clusters
• naturally occurring epidemic (flu)
• bioterrorism (anthrax release)
• environmental hazard (radiation leak)

• Brain imaging
• to detect tumors or hazardous growths
• to detect spatial patterns of brain activity

• In Astronomy
• Identify star clusters and galaxies

• In Military Reconnaissance
• monitoring strength/activity of enemy forces
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Two main goals

• To pinpoint the location, shape and size of each potential cluster
• To determine (test) if a potential cluster is likely to be a "true"

cluster or a chance occurrence

We compare the null hypothesis H0 of no clusters against some set of
alternative hypotheses H1(S), each representing a cluster in some
region or regions S ⊂ G. In frequentist setup, testing of significance is
done via p-values of potential clusters by randomization. In Bayesian
setup, testing is done via posterior probabilities of each potential
cluster.
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Motivating Application: prospec-
tive disease surveillance

Objective is to detect spatial clusters of disease cases resulting from a
disease outbreak.

In this application, perform surveillance on a daily basis, with the goal
of finding emerging epidemics as quickly as possible.

Given data: we are given the number of cases of some given
syndrome type (e.g. respiratory) in each spatial location (e.g. zip code)
on each day. More precisely, we rely on related observable quantities
such as no. of ED visits or OTC drug sales.

We must then detect those increases which are indicative of emerging
outbreaks as close to the start of the outbreak as possible, while keeping
the no. of false positives low. In biosurveillance, every hour of earlier
detection can translate into less mortality/morbidity by timely
administration of antibiotics.
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Elements of the problem

Daily data collected for a set of discrete spatial locations si. At each
location si, we have a count ci (no. of disease cases), and an
underlying baseline bi. Baseline may correspond to the underlying
population at risk, or may be an estimate of the expected value of the
count (e.g., derived from the time series of previous count data).

Goal is to find if there is any spatial region S (set of locations si) for
which the counts are significantly higher than expected, given the
baselines.

Locations si are assumed to be aggregated to a uniform, N × N grid
G, and we search over the set of rectangular regions S ⊆ G. This
allows search both compact and elongated regions; elongated disease
clusters may result from dispersal of pathogens by wind or water.
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Kulldorff’s frequentist scan statistic

An important statistical tool for cluster detection is Kulldorff’s spatial scan

statistic. The method searches over a given set of spatial regions,
finding those regions which maximize a LR statistic and thus are most
likely to be generated under the alternative hypotheses of clustering
rather than the null hypothesis of no clustering. Randomization testing
is used to compute the p−value of each detected region, correctly
adjusting for multiple hypothesis testing, to identify potential clusters
and determine their statistical significance.

Kulldorff assumes under a Poisson model that counts ci are Poisson
distributed with mean qbi, bi is known census population of cell si and
q is the unknown underlying disease rate. Scan statistic is obtained by
calculating first the LR stat

F (S) =
P (Data|H1(S))

P (Data|H0)
,

where H0 assumes a uniform disease rate q = qall.
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Kulldorff’s SSS (continued)

Under H1(S), we assume that
q = qin for all si ∈ S, and q = qout for all si ∈ G − S, qin > qout

F (S) = (q̂in)Cin(q̂out)
Cout(q̂all)

−Call , if q̂in > q̂out

and F (S) = 1 otherwise, where q̂x = Cx/Bx. Cin =
∑

S ci,
Bin =

∑

S bi, etc.

S∗ = arg maxSF (S) is the highest scoring LR region with score
F ∗ = F (S∗). The test is carried out by randomly creating R replica
grids by sampling under H0 ci ∼ Po(qallbi), and find the highest
scoring region and its score for each replica grid. Then

p − value of S∗ =
Rbeat + 1

R + 1

where Rbeat is the number of replica grids with an F ∗ higher than the
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Kulldorff’s SSS (continued)

Q: qall is estimated?

• Three difficulties
• Difficult to use prior information about the size of a potential

outbreak and its impact on disease rate
• Highly dependent on the MLE; model is prone to parameter

overfitting; loses power for misspecified model
• Time consuming. Using rectangles of size i × j,

i, j = 1, . . . , N/2 computational complexity for an N × N grid
is O(N4), with R replica grids it is O(RN4).
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Bayesian SSS

• Bayesian model makes use of prior information. Good priors may
have performance better than frequentist SSS.

• Bayesian method uses marginal distribution, averaging over
parameters qin, qout and qall. This makes the model more flexible
and less prone to overfitting

• Under Bayesian approach, no need for randomization. Complexity
of O(N4)

Bayesian SSS is calculated using a conjugate gamma prior for the
Poisson likelihood. Poisson-Gamma model is widely used in Bayesian
disease mapping.
Prior distribution:

• Under H0, q = qall ∼ Gamma(αall, βall)

• Under H1(S), q = qin for all si ∈ S with qin ∼ Gamma(αin, βin)
and q = qout for all si ∈ G − S and qout ∼ Gamma(αout, βout)
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