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Abstract 

 In this paper we address the problem of selecting variables or features in a regression 

model in the presence of both additive (vertical) and leverage outliers.  Since variable 

selection and the detection of anomalous data are not separable problems, we focus on 

methods that select variables and outliers simultaneously.  For selection, we use the fast 

forward selection algorithm, LARS, which is not robust.  To achieve robustness to additive 

outliers, we append a dummy variable identity matrix to the design matrix and allow both 

real variables and additive outliers to be in the selection set.  For leverage outliers, we use 

these selection methods on samples of elemental sets in a manner similar to that used in 

high breakdown robust estimation.  Bagging is then used to stabilize the selection results.  

We conclude by comparing our results to several other selection methods of varying 

computational complexity and robustness and discussing the extension of our methods to 

situations where the number of variables exceeds the number of observations. 

Keywords: Robust regression; Variable selection; LARS; Outliers; Elemental sets 

 

1. Introduction 

 In many areas where regression is used, the emphasis is on model and variable (feature) 

selection.  Model selection generally focuses on the ability to predict well (preferably on 
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out-of-sample data) with less emphasis on getting the variables in order of importance or 

exactly right.  Variable or feature selection places more emphasis on finding the correct 

variables.  Of course, variable selection is one way to accomplish model selection. 

 We are concerned with selection methods that are robust to outliers.  There are a 

number of approaches in the literature such as Ronchetti et al. (1997), Morgenthaler et al. 

(2004), and Müller and Welsh (2005).  These papers contain references to a number of 

others.  A Bayesian approach is discussed in Raftery et al. (1997).  The available methods 

are, generally, computationally expensive, lack high breakdown properties, and run into 

problems if there are more variables than observations. 

 Another difficulty arises because robustness and variable selection are not necessarily 

exchangeable, i.e., selection may affect what is considered to be an outlier and vice versa.  

Since there are a large number of fairly fast selection algorithms available, it is tempting to 

select first and ask robustness questions later.  There are also a variety of fairly expensive 

high breakdown robust estimators available.  These could be used on the full model, 

weights between zero and one placed on each observation, and then standard variable 

selection would be run with these weights fixed. 

 High breakdown robust regression generally requires some form of sampling (looking 

for “good” subsets of the data).  For a discussion see Rousseeuw and Van Driessen (2000).  

If we are going to sample, and then select variables on those samples, a fast selection 

algorithm is required.  Least angle regression (LARS) developed by Efron et al. (2004) 

provides a very fast way to do forward selection.  LARS addresses the problem that 

standard least-squares forward selection can be overly greedy and can also easily provide 

the LASSO (Tibshirani, 1996) sequence of variables to enter the model.  It is, however, not 
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robust to outliers since it depends on the computation of the pairwise correlation matrix of 

the explanatory variables.  Khan et al. (2005), hereafter sometimes called KVZ, provide 

several approaches to addressing the selection problem with LARS in the presence of 

anomalous data.  They propose replacing the non-robust correlation matrix by a (fast) 

robust version.  This, however, requires treating outliers before selection, something we 

would like to avoid as much as possible. 

 In this paper we use LARS to both select variables and outliers simultaneously by 

adopting the dummy variable approach contained in Morgenthaler et al. (2004) combined 

with the elemental set sampling that is essential for high breakdown robust estimation 

(Rousseeuw and Van Driessen, 2000). 

 

 

2. Vertical or Additive Outliers 

 If the regression data contained only additive outliers (called vertical outliers by 

Rousseeuw and Van Driessen (2000)), then we could start with the usual regression model 

      y = Xβ + ε     (1) 

with y n × 1, X n × p, β p × 1 and ε n × 1 and append an n × n identity matrix to X to form a 

new model 

      y = Zδ + ε     (2) 

where Z = X | I is n × (p + n) and δ is (p + n) × 1.  Of course, this problem is under 

determined and traditional least-squares estimation will not work.  However, if we have a 

variable selection procedure (such as forward selection) that would accommodate more 
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variables than cases, then we could proceed to simultaneously select variables and outliers.  

LARS is a reasonable (and fast) candidate, the only limitation being that no more than n out 

of the n + p possible explanatory and dummy variables can be selected. 

 If we assume that our data has no more than 50% contamination (outliers), then we will 

need to select a maximum of n/2 additive outliers.  Therefore n/2 + p should be less than  

n, which limits the number of “real” explanatory variables we can consider to  

p < n / 2.  The default level of contamination for many robust regression programs (SAS, 

S+, etc.) is 25% and we shall use that as our default in what follows.  This implies p < 3n/4.  

There are ways to relax these restrictions on p, and we comment on this at the end of this 

paper. 

 

3. Variable Selection 

 Given the problem (2) with dummy variables appended, LARS will provide a sequence 

of models of size 1, 2, . . . , q where q is chosen to be less than or equal to n.  With 25% 

contamination q is p + n/4 if p is less than 3n/4.  For each of the q models, we obtain LARS 

estimated regression coefficients.  We can also compute least-squares (LS) regression 

coefficients for each of those models and models with dummy variables included will 

automatically exclude observations corresponding to the dummy variables selected.  One 

natural approach to selecting variables for the LS fit is to use t-statistics based on  

n − (p + n/4) = 3n/4 − p degrees of freedom.  When the number of degrees of freedom is too 

small, other approaches are needed and we return to this later on. 
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 We call this algorithm LARSD-T and the parameters to be chosen are the level of 

contamination (25% in our examples) and the t-statistic threshold for deciding if a (real) 

variable should be retained out of the q real and dummy variables selected.  We also 

considered removing any non-significant dummy variables (as determined by the t-statistic) 

and refitting.  This is called LARSD-T2. 

 

4. High Breakdown Methods 

 When the data contained leverage outliers (Rousseeuw and Van Driessen, 2000) 

appending the dummy variable matrix to X will, in general, not provide a high breakdown 

robust method.  If variable selection is not an issue, high breakdown methods such as S or 

MM estimators begin with a least trimmed squares (LTS) algorithm such as the one 

discussed in Rousseeuw and Van Driessen (2000).  These algorithms depend on the 

sampling of elemental sets of size p (or perhaps a little larger) in order to find a “good” 

subset of the data that minimizes the LTS fitting criterion. 

 Since these methods are designed to address both vertical and leverage outliers, there 

would not appear to be a need for the dummy variables.  We would take a sample of size p 

(or larger), use LARS to find p models, compute a robust prediction error (median absolute 

deviations from the median or MAD) on the remaining n − p observations, repeat this 

process, say 2,000 times, choose the best model based on prediction error, and select the 

variables contained in that model. 
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 We also considered both sampling and appending dummy variables.  This was designed 

to help in cases where our sample was, say, clean of leverage outliers but still had some 

additive outliers. 

 

5. Selecting the Variables When Sampling 

 When sampling cases with a sample size of p, we will have the p models to consider 

from each sample multiplied by the number of samples we use.  Picking the best model 

based on a robust prediction error is unlikely to lead to the best selection of variables due to 

sampling variability.  We always caution users of Cp, etc. to look at a number of models 

nearest the lowest Cp or nearest to p.  In data-mining applications, models within one 

standard deviation (based on cross-validated sampling error) and of lower complexity are 

often considered (Hastie et al., 2001). 

 We face a similar problem and keep track of the best one percent of models based on 

the MAD prediction error of the models obtained from LARS and over all samples.  The 

next problem is to select the “best” variables from these models.  We adopt the bagging 

idea of majority rules (Breiman, 1996).  If a variable appears in 50% or more of the top one 

percent of models, we declare the variable to be in the final model. 

 

6. Simulation Results 

 Since Khan et al. (2005) and other authors have used the basic simulation design of 

Ronchetti et al. (1997), we also use it here.  Four error distributions are considered: N(0,1) 

(e1), 93% N(0,1) and 7% N(0,5) (e2), slash or N(0,1)/U(0,1) (e3), and 90% N(0,1) and 10% 

N(30, 1) (e4). 
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 There are two matrices of explanatory variables each containing six variables with 

sample size of 60.  In the first, the variables are all independently drawn from a uniform 

(0,1) distribution.  In the second, two rows are replaced by a leverage points (0,3,3,3,3,3) 

and (0,5,5,5,5,5).  There are five non-zero regression coefficients each with a t-statistic of 

six under model (e1).  All columns of data are centered and scaled robustly using the 

median for location and MAD for scaling.  We consider a selected model correct if we got 

five and only the five non-zero variables in the model.  There are other figures of merit we 

could use and we will consider some in a later section of this paper. 

 Our results are summarized in Table A.  LS-CV is a cross-validated LS selection 

method due to Shao (1992).  BIF-CV is a bounded influence cross-validated selection 

method due to Ronchetti et al. (1997).  LARSD-T and LARSD-T2, described earlier, use a 

Bonferroni t-value for selection with α = 0.05/6.  LARS-S6-CV and LARS-S8-CV draw 

2000 samples of size 6 (or 8) and let LARS select six models (with one up to six variables) 

on each sample.  These six models are also fit using LS.  The best (lowest) MAD prediction 

score from either the LARS or LS coefficients is retained.  Checking both the LARS and 

LS coefficients always gave better results.  See Meinshausen (2005) for a theoretical 

justification of this result.  From these 12,000 models, variables were selected as described 

in the section on variable selection.  We also created a variation on LARS-S6-CV and 

LARS-S8-CV which we call LARSD-S6-CV and LARSD-S8-CV.  The letter “D” denotes 

that the variables available for selection by LARS include dummies as well as  the real 

explanatory variables. 
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 Since the LARS algorithm can also produce LASSO (Tibshirani, 1996) coefficients and 

models, we also tried this in some cases.  Neither the LASSO nor LARS dominated across 

the error models and leverage situations. 

 BIF-CV is based on bounded-influence robust estimation which has breakdown bound 

of order 1 / p.  Since there are just two leverage points and at most 10% contamination, 

BIF-CV is probably not breaking down except possibly for the slash distribution. 

 LARSD-T and LARSD-T2 provide results similar to BIF-CV (without all possible 

subset selection and cross-validation).  Ironically, they do better on slash and not as well on 

e4, which is the additive outlier error model.  We are fitting for 25% contamination (15 

dummies) and, thus, being overly protective in this case.  For slash, we are making better 

use of our 25% contamination protection, while BIF-CV is probably breaking down in 

more cases.  This advantage seems to go away when we remove insignificant dummy 

variables as in LARSD-T2 case. 

 The estimators using samples of size 6 and 8 cannot be expected to do as well in “nice” 

situations since they are attempting to provide more protection.  Since those estimators look 

for “good” subsets of the data and then perform selection (in our case via LARS), we could 

improve efficiency on (e1) by the appropriate use of a fast algorithm for S-regression like 

that proposed by Salibian-Barrera and Yohai (2005).  This work is in progress. 

 We note, however, that going from the minimal sample size of 6 to 8 provides a 

dramatic boost in our results, especially in the non-leverage cases.  The downside is that we 

would, technically, need more samples to get a “clean” subset of size 8 rather than size 6.  

For leverage cases, sampling with 6 or 8 is very effective, as it should be.  There appears to 

be little to gain from including dummy variables once sampling is used. 
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 Table A 

 Uniform Leverage 
Method e1 e2 e3 e4 e5 e6 e7 e8 
LS-CV 188 47   0    3 186 44   0    1 
BIF-CV 157 160 10 167 169 166   7 172 
LARSD-T 178 167 28 152 178 186 41 154 
LARSD-T2 185 181 12 150 187 182   9 154 
LARS-S6-CV 132 128   8 124 167 143 12 157 
LARS-S8-CV 169 156 10 156 182 174 24 175 
LARSD-S6-CV 130 122   3 109 167 152 14 155 
LARSD-S8-CV 161 149 17 140 172 168 36 168 

 

 

7. Comparison with KVZ 

 Khan et al. (2005) use a modification of the Ronchetti et al. (1997) simulation design.  

KVZ keep the error distributions the same as well as the non-leverage design matrix.  The 

leverage design matrix has just one leverage row (5, 5, 3, 3, 3, 3).  There are only three 

non-zero regression coefficients with values 7, 5, and 3.  Following Khan et al. (2005), two 

performance measures were considered, exact (E) and global (G).  The exact measure gives 

the percentage of times a procedure chooses the non-zero variables first and in their true 

order (7, 5, 3).  The global measure gives the percentage of times a procedure chooses the 

non-zero variables first, but any order is allowed. 

 We compare our results with those of Khan et al. (2005) in Table B.  The first six rows 

are taken from their paper.  The W stands for Winsorized, the P for plug-in, and the C for 

cleaning.  They also considered an M-estimator approach, but the results are similar and the 

method is more computationally complex. 
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Table B 

 Uniform Leverage 
Method e1 e2 e3 e4 e1 e2 e3 e4 
LARSE 97 86 11   8   0   1   1   2 
LARSG  100 89 26 24   0   2   5   7 
WPE 96 97 58 78 92 85 46 59 
WPG 99 99 77 89 94 86 61 68 
WCE 96 98 54 82 96 94 52 83 
WCG 99 99 76 92 98 96 71 92 
LARSD-TE 95 95 61 83 96 95 65 85 
LARSD-TG  100  100 80 88 100 99 85 91 

 

 We see from Table B that using LARS with the added dummy variables and t-statistics 

for final selection compares quite favorably to the Khan et al. (2005) procedures on 

problems of this size and level of contamination.  Without sacrificing efficiency, we make 

some gains in the slash and additive outlier cases.  Appending dummy variables and using 

LARS is a simple way to achieve robust selection where leverage outliers are not a major 

concern.  The sparse nature of the dummy variable matrix means that there is little 

additional computational complexity beyond LARS itself. 

 

8. Conclusion 

 Although it is wise to be cautious about generalizations from a small set of simulation 

results, it appears that LARS when coupled with either dummy variables or row sampling, 

can provide computationally efficient robust selection procedures that are reasonably 

efficient at the Gaussian model. 

 When p approaches n and even exceeds it, as is often the case in bioinformatics feature 

selection, adding dummy variables or sampling with LARS will not work directly.  
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Morgenthaler et al. (2004) showed that ridge regression with dummy variables can be an 

effective robust selection tool but ridge is more costly than LARS.  However, ridge 

regression can be used for p ≥ n, but leaves many non-zero coefficients.  The elastic net 

ideas of Zou and Hastie (2005), which adds a p × p diagonal matrix of rows to the n × p 

data matrix and then uses LARS (LASSO) to select variables, can be used with appended 

columns of dummy variables.  Both the sparsity of the p × p appended row matrix and the 

appended dummy variable matrix is important to computational feasibility.  The elastic net 

also makes sampling feasible with or without dummy variables. 
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