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Temporal Surveillance Using Scan Statistics

         Joseph Naus and Sylvan Wallenstein

Summary


We describe two classes of statistics for testing an arbitrary model of disease incidence over time against an alternative model involving a spike (pulse) superimposed on this background.  The statistics are each based on taking the maximum of some function comparing observed and expected numbers of events in a window of width w.

One approach applies p-values for scan statistics calculated for a constant background rate to this more general problem. For a fixed window, w, the approach gives a simple formula to determine p-values for retrospective analysis, or to sound an alarm for either continuous or grouped prospective data.  The latter application involves a new approximation for the distribution of the maximum number of cases in w consecutive intervals. 

 The second approach based on Generalized likelihood Ratio tests (GLRT’s), sounds an alarm for a higher than anticipated rate of events in a scanning window of fixed length, or for window sizes that lie in a region. GLRT’s are constructed for continuous observations, for grouped data, or for a sequence of trials. As for GLRT’s used in retrospective evaluations, simulation is required to implement the prospective procedure.  

For grouped surveillance data, we compare by simulation, operating characteristics of the P-scan with fixed windows (both correctly specified and not), the fixed-window GLRT, the variable- window GLRT, and a variant of the CUSUM. The simulations demonstrate a very high correlation between the P-scan and corresponding fixed-window GLRT.
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Introduction
 Public health officials and epidemiologists often focus on a large temporal disease cluster. The investigators ask whether the cluster is unlikely to have arisen by chance given random variations from the background incidence. The researcher seeks to take into account the multiple comparisons inherent in the scanning of a larger review period to focus on the unusual cluster. Scan statistics are tools to answer such questions. 


Scan statistics have been used to retrospectively test for unusual clustering of different cancers, Down’s Syndrome, suicide, SIDS, HIV, livestock diseases, and other applications [1]. The events of September 11, 2001, and subsequent anthrax-laden mail focused attention on prospective surveillance. Scan-type statistics are particularly useful to get early warnings when there are multiple attacks within a short time, and where it will be obvious within some fixed time that what has happened was not due to chance. 

Scan Statistics have been developed and applied for three temporal scenarios. In the first scenario, the times of occurrence of events are reported and the continuous scan statistic is the maximum number of events in a window of length w that scans the time period (0, T). In the second scenario, time is divided into T disjoint intervals (hours or days) and the reported data consists of the number of events in each interval. In this context, surveillance is performed in terms of the ratchet-scan statistic, the maximum number of cases within w consecutive intervals. In the third scenario, the data is viewed as a sequence of T trials, where  for each trial it is recorded whether  or not an event  has occurred; the binary scan statistic is the maximum number of events in any w consecutive  trials.  For the continuous, ratchet, and discrete scan statistics simple approximations for p-values exist for the constant background case [1-3].  

Moderate seasonal, trend or other temporal incidence variations in background rates require either a modified scan or an alternative statistic. At least two approaches have been given for the retrospective case: one a scan-type generalized likelihood ratio test (GLRT) and one a modified scan based on stretching or contracting window  size. The GLRT is based on the maximum of a function of the observed and expected number of cases within a fixed-width scanning window, but requires simulations to get p-values. Weinstock [4] modifies the retrospective continuous scan statistic to handle non-constant background rates using a window size that varies over time and always contains w/T of the expected number of observations. Weinstock’s statistic has the major advantage that it allows calculation of p-values based on simple approximation formula for the conventional scan statistic.  However, Weinstock’s statistic loses the important advantage of using a window whose width w is constant over the review period. These include canceling out temporal cycles, such as day-of-week (w=7), or seasonal (w=365) effects, and taking into account latency periods or diagnostic times that would lead to an a priori choice of w. 

We develop a P-scan approach for all three temporal scenarios. This approach has the advantage of using a window whose width is constant over the review period without the need to simulate p-values. P-scan uses available approximation formula for the constant background case to provide p-value statistics for testing in the non-constant background case.  

For the continuous scan statistic, the simplest retrospective null model of randomness is that a known number of N cases are distributed uniformly on (0,T).  The test that rejects the uniform null model for large values of a fixed-size window, continuous scan statistic is a generalized likelihood ratio test (GLRT) against a pulse alternative  hypothesis in which the density is a constant percent higher over some subinterval of length w [5].  Loader [6] gives the GLRT for the pulse alternative for an unknown value of w within a specified range, and extends it to two dimensions.  

For the case of a non-constant background rate, the simple scan and GLRT give different scan-type statistics.  Nagarwalla [7], and Kulldorff and Nagarwalla [8] generalize, in one and two dimensions respectively, Loader's results to the case of a known non-uniform null distributions. Kulldorff [9] proves some results concerning the two-dimensional GLRT and also derives the GLRT to test the null hypothesis that the proportions are all equal, against the alternative that r consecutive  proportions are increased. These retrospective methods focus on w in a range of values, can handle w fixed, but in either case require simulations. Kulldorff [10]) gives a way to apply the retrospective statistic to prospective surveillance. 

 We derive the GLRT for prospective surveillance for the continuous, grouped, and binary trial scenarios, given a null non-constant background. The GLRT requires simulation to set critical values. We develop an alternative scan procedure, the P-scan approach, that does not require simulation to set critical values, but that behaves similarly to the GLRT. 

We first develop the P-scan statistic approach for continuous, grouped, and binary trial temporal scenarios. Simulations illustrate how closely the P-scan test maintains false alarm rates.  We then derive results for the Generalized Likelihood Ratio Tests (GLRT 's) for the prospective case for the three scenarios, and then compare the operating characteristics of the GLRT and P-scan procedures.

          P-scan Approach

This section develops the P-scan approach for fixed window size scan statistics. The approach utilizes available formula to provide p-value test statistics for the non-constant background case.

In the continuous scenario, the times of occurrence of events are reported and for each time t in the review period,  (w ≤ t ≤T), we know the observed number of events Yt(w), and the expected number of events Et(w), in the subinterval (t-w,t). 

In the grouped and binary trial scenarios, time is divided into T disjoint intervals and the reported data consists of the number of events in each interval. In the grouped scenario the interval count can take any integer value; in the binary trial case the interval count can be 0 or 1 indicating the absence or presence of an attribute in that interval (or trial). For t = w, w+1,…, T, Yt(w),  and Et(w),  are the observed and expected number of events within the w consecutive intervals, t-w+1, t-w+2,…, t.

 Let Sw denote the scan statistic, maxt{ Yt(w)}.   For the case where Et(w) is a constant   for all t,  simple approximations are available  for P{Sw ≥ k | } for the cases discussed in this paper. For this constant background case, P{Sw ≥ k | } is the p-value corresponding to an observed  cluster size Sw = k. Denote this constant background p-value by P(k; , w, T).  For the non-constant rate scenarios, for each observed Yt(w),  compute P(Yt(w) ; Et(w), w, T), which we abbreviate  to P(Yt; Et, w, T).  The P-scan statistic (PSS) is   Mint{ P(Yt; Et, w, T)}.  For the non-constant (null) background rate scenarios the P-scan test rejects the null hypothesis if PSS < .  Equivalently, the P-scan test rejects the null, iff for any t, 

P(Yt; Et,w, T) ≤ . 



(1)

Any exact value or approximation can be used for P(k;,w,T) in (1), but we illustrate with simple approximations. To implement the prospective P-scan test for a given , if we find any t where (1) holds, then it is not necessary to compute PSS. We indicate in Appendix A why the P-scan test has overall level of significance < . 

In implementing the P-scan procedure, different approaches are used to compute expected values, depending on the type of background rate information available. If background rates are available on a scale much smaller then w (eg expected values are available daily and  w is 7 days), then there is no problem in obtaining Et(w).  If background rates are available only on the same scale as w, then Et(w) would be replaced by the average  background rate for the position of the window. For example, if background rates are available on a calendar week basis, and we are implementing surveillance with a 7-day scanning window then we would replace Et(w) by the average  background rate for the two calendar weeks within which the moving week falls. 

The P-scan test, like the traditional scan, and the GLRT is based on a function of an integer valued variable, Yt(w).  For either the constant or varying background null hypothesis, the critical values for the statistic can be chosen to make the level of significance of the test less than, but in general, not equal to, .  This situation is common for many tests based on discrete random variables, where randomization can be used to achieve an overall false alarm rate equal to . The randomized P-scan test sounds an alarm if for any t, either  P(Yt; Et, w, T) ≤ or if  P(Yt+1; Et, w, T) ≤ ≤ P(Yt; Et, w, T), where a random number between  0 and 1 is less than f, where

f = { - P(Yt+1;Et,w, T)}/ {P(Yt; Et, w, T)- P(Yt+1;Et,w, T)}.

(2)

   Randomized procedures are useful for theoretical comparisons, and allow the achievement of the desired false alarm error rate. However, they have the unpleasant feature that two analysts applying the same test to the same data may get different results. For the case where background rates vary we propose an alternative procedure based on mid-p-values [11 ,12 ] to reduce the over-conservatism of the non-randomized test.  In this case, reject the null hypothesis if f ≥ 0.50, or equivalently if for any t, 

{P(Yt; Et, w, T)+ P(Yt+1;Et,w, T)}/2  < 


3

The minimum over t of the left-hand-side of (3) is a mid-p-value. 


It is tempting to view data-dependent p-values, with all the interpretations and misinterpretations given to these random variables, as “observed levels of significance” [13]. The non-constant background P-scan procedure is a good example of where such an interpretation is not appropriate.  Particularly in terms of prospective ongoing surveillance applications, it is appropriate to view PSS and P(Yt;Et, w, T) as statistics used in a test with a fixed predetermined level of significance. 

A communicable disease center may be getting reports on hundreds of different organisms, carrying out separate monitoring for each; and may have resources to handle a certain number of follow-ups in a budgetary review period (say a fiscal year). By choosing a small fixed level of significance, , for each of N organisms, they can anticipate approximately N false alarm follow-ups in a fiscal year. Similarly a State Health  department could estimate its total follow-ups of reports by county health departments each carrying out their own monitoring.

Retrospective  Case and  Continuous time


The theory and application of the scan statistic with a window of size w, for the retrospective case where times of N events are independent uniform random variables on (0,T) is well developed. For our extension, the P-scan procedure rejects the null hypothesis of any prespecified density in favor of a pulse alternative if for any t, w< t ( T, equation (1) holds for any value of t. To check whether (1) holds for a particular value of t, say t*, we need to compute P(Yt*; Et*, w, T) which is a function of Yt*, Et*, w, T.  For a constant background case, the expected number of points in (t*-w, t*) is Nw/T. For the non-constant background case, information on variations over time of population at risk, or historical average seasonality effects might indicate that Et* should be increased or decreased above Nw/T by a certain amount, so that the number of events in (t*-w,t*) is Et*. The approximate probability for the retrospective case (hence the subscript R), PR(Yt*; Et*, w, T), is calculated using  the Wallenstein-Neff [14] approximation

     PR(k; , w,T)  ( [(k-)(T/w) + 1] b(k;T/w ,w/T) + 2 
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where we round the second argument in b, and where 



b(k;M,p) = (Mk )pk(1-p)M-k.

 Note that if  Et= (1+d) Nw/T, then M = (1+d)N.

Example: Using Weinstocks’s [4] method of stretching time,  a scan procedure with a 30-day window is used [15] to test for unusual clustering of inflammatory bowel disease(IBD) in counties in Sweden. For a particular county, there were N = 194 cases in a 13 year review period (T = 4748 days). A cluster of 8 cases was noted in a 30 day period, (t*-w,t*) . To test the significance of the cluster of 8 cases, one needs to know the relative background rate for the 30 day period containing the cluster. (If there is more than one position for the 30 day period that contains the cluster, we take the position with the lowest background rate.) 

For example, if the number of births for the 30 day period containing the cluster was 4% above the average number of births for a 30 day period within the 13 year review period, i.e. d=1.04, we would take the expected number of IBD cases for the cluster in 30 days to be 1.04 times the average  number of IBD cases per 30 day period for the whole review period,

Et(30) = 1.04 {Nw/T} = 1.04 {194(30)/4748} = 1.275 cases.

Apply equation (4) to find PR(8;1.275, 30, 4748)= 0.047, so that  at  = 0.05, we would reject the null hypothesis based on that cluster. 


For a 10% increase above average, PR(8;1.348,30,4748) = 0.0672, 

PR(9;1.348, 30, 4748)= 0.0112, and the mid-p-value  is < .039 < .05 and we would reject the null hypothesis .  For a 15% increase over background, PR(8; Et* ,w,T) = 0.091, 

PR(9; Et*,w,T) =0.016, the mid-p-value = 0.054>0.05, and we could not reject the null based on that cluster.


Prospective  Case, Continuous Time

The theory and application of the scan statistic for the prospective case where events occur according to a homogeneous Poisson process has been developed [1, chapters 3 and 11]. We extend the scan statistic to the prospective continuous (PC) case (or technically, the non-homogeneous Poisson case) by rejecting the  null hypothesis if for any t, w< t ( T, P(Yt;Et, w, T) ≤  where we can use the simple approximation by Alm [16], 



PPC (Yt; Et, w,T)  ( 1 – F(Yt -1;Et)exp{-[( Yt - Et) Et / Yt] [(T-w)/w] p[Yt –1; Et]}
(5)

where

      p(r;) = e-  r/r!      ;   F(k;) = r(k p(r;).



(6)

Alternatively, one could use the even simpler, but slightly less accurate Wallenstein Neff approximation [14].

Prospective Case, Grouped Data

First consider the grouped case where one scans the last w time intervals, and the number of events per time interval has a Poisson distribution. For the constant background prospective case, the number of events in T intervals are T independently and identically distributed Poisson random variables, each with expectation /w. For the prospective grouped constant background case, Appendix B developed the following new approximation,

PPG(k; ,w,T) ( 1- F (k-1;  )({
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For the non-constant background null case, the P-scan test rejects the null, iff for any t, 

PPG(Yt; Et,w, T) ≤ .

Example: Chang, Glynn, and Groseclose [18] note that among microbiologic agents with particular potential for bioterrorism, brucellosis and tularemia are the diseases most often reported to the National Notifiable Disease Surveillance System. Many cases of human brucellosis are related to eating infected unpasteurized dairy products or working in meat processing. We illustrate the application of the ratchet scan to a prospective monitoring of human brucellosis for 2002. The analysis takes into account seasonality effects by estimating weekly average background from data for the five previous years. The data set and the results from a related analysis in continuous time has been described previously[19]. Each week, the CDC in MMWR give the number of reported cases in the past 4 weeks for selected organisms, so in this analysis we chose surveillance with a four-week window that shifts each week. We want to set the false alarm rate ≤ 0.05, per organism for a 52-week review period, starting on January 1, 2002. We observe at week 22, a four-week window with 21 cases observed, as compared to a background expectation (based on five previous years) of 8 cases.  Applying (7), gives

PPG(21;,4, 52) (  1- .999906(.999828/.999906)48 = .0038.

Note that P(k;,w, T) for the ratchet scan must be less than that for the continuous scan. Applying (5) yields PPC(21;,4, 52) ( 0.0095.  
 Prospective  case, Binary events


In the simple constant rate model, there are T independent binary trials, with probability (of “success” on trial t) = p, a constant. Wallenstein, Naus, and Glaz [17] give the following approximation for the probability that there is a subsequence of w events with k or more successes

PPB(k;, w, T) ( 1 – {C(D/C)(T/w)-2}, 




(8)

C = 2 i<k b(i;w,p) – 1 – (k – 1 - wp)b(k;w,p)
,




D = 2 i<k b(i;w,p) – 1 – (2k – 1 -2wp)b(k;w,p), 




where b(k,w,p) is defined in equation (4). 

Example:  After training, a pediatric cardiac surgeon performed neonatal operations to transpose great arteries [20]. There was one death in the first 52 operations, which was low relative to background expectation of 3.5 deaths of a “control” practice.  Then patients 53, 55, 59, 63, 64, 67, and 68 died. After patients 55 and 64, the surgeon visited another hospital to see their procedures, and after patient 68 retrained. After retraining, there was 1 death in the next 36 patients.  The surgeon and his co-authors apply a CUSUM procedure to the data, and note that “if a mechanism of continuous monitoring had been in place, unfavorable trends and a need for change in protocol would have been detected earlier.”     

The surgeon initially estimated based on the first 50 operations that the in-control expected mortality rate is 2 percent, so that Et = w(.02).  A scan monitoring plan might be chosen to warn early for any sharp increase in mortality rate, as might be reflected in a cluster of 3 deaths within an unusually small number of consecutive operations.  For example, the plan can be designed so that if the expected mortality rate is in control at 2%, then there would be only a 0.05 chance of a false alarm anywhere within the next T = 100 operations (more than 5 years of practice in the present example).  For a cluster of 3, the choice of w=15 is appropriate since by equation (8), P(3;, 15, 100) ( 0.046.  This implies, that when in-control, the probability that the run length (number of operations) to the first alarm is greater than 100 is 0.954. Similar use of (8) will give the entire distribution of run lengths, and will show that the median run length is 1341 operations.

   Similarly, one can compute the out-of-control distribution of run lengths. For an out-of-control mortality rate of 12%, the chance of an alarm somewhere within the next 100 operations is P(3;1.8, 15, 100) ( 0.96.  For an out-of-control mortality rate of 20%, there is a 60% chance of an alarm within the first 15 operations, and an 89% chance of alarm within the first 30 operations. 

Applying the above test, we see that after patient 59 died, there would be k = 3 deaths in the past 15 operations, as compared to an expected number of 0.3 cases and an alarm would be sounded. This assumes that these 15 operations were of average risk.  Patients’ age, weight, anatomy of coronary artery and other possible risk factors vary. The P-scan procedure allows us to take this varying risk into account in evaluating clusters.  Based on various control comparisons, a mortality probability might be assigned to each individual patient. The expected mortality rate for the 15-operation window would be the sum of the mortality probabilities for the 15 patients.  Suppose that for the 15 operations 45 to 59, the expected mortality rate averages 4% per patient, so that the 3 observed number of deaths in the window is compared to an expected number of 0.6 cases. The P-scan procedure would compute P(3;0.6,15, 100) ( 0.25, the mid-p-value = 0.15 > 0.05,  so that an alarm would not be sounded at this point. However, by operation 63, there would be 4 observed deaths in the window, and if the expected mortality rates averaged 4% for the 15 patients from 49 to 63, the P-scan procedure would compute P(4;0.6,15,100) ( 0.045, and an alarm would be given at the death of patient 63.

The P-scan monitoring approach emphasizes unusual clusters, and is designed to be sensitive to sudden increases.  It can be combined or used to supplement the CUSUM approach if one is also concerned with a gradual increase in risk spread over a longer period. This is in the spirit of  Page’s [21] idea of calling a process out-of-control if there is either 1 extreme point (say outside 3-sigma limits), or k out of n consecutive points outside 2 sigma limits. 
Generalized Likelihood Ratio Tests

For the retrospective constant background null case, the scan statistic is a generalized likelihood ratio test (GLRT) against a pulse alternative [5]. For the non-constant null case, Kulldorff [9] shows that the GLRT test for an increase over a prespecified window w is based on rejecting the null hypothesis for large values of 


   G(w)= maxt {Yt(w) ln [Yt(w) / Et(w)] +(N- Yt(w)) ln [ (N- Yt(w))/(N- Et(w))]}         (9)

over Yt(w) > Et(w).  The critical value is obtained using simulation. As a practical matter, both the statistic and the simulation are taken over the set of observed values, rather than conceptually at each time point. 
The GLRT is a scan-type statistic, that is, a function of the observed and expected number of events in a scanning window of width w. For the case where the width is not known but is in the range from u(w(v, Kulldorff [9] maximizes (9) over w yielding the statistic max u(w(v G(w) . 

We extend these results to surveillance, first developing the GLRT for the discrete case where  the number of events, Ui , in the ith time unit is Poisson distributed with expectation  i.  The procedure tests 

Ho : i =  i(0),  
     

   1 ( i ( T,
(10)

with i(0) assumed known, against the pulse alternative that for an unknown b, 

H1 :
 i =  i(0),
     


 b-w+1 ( i ( b


(11) 

                    
 i =  i(0),



otherwise.

The log likelihood ratio is

   maxb, 
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 {Ui ln  - i-  = max b, [Yb(w) ln-- Eb(w)

Take the derivative of the expression in brackets in (12) with respect to , and equate it to 0, to find for given b, that the maximum occurs at  
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​b= Yb(w)  / E b(w)).

The GLRT for the pulse alternative with w fixed rejects (10) vs (11), for large values of

          G(w) = max b { Yb(w)  ln [Yb(w) / Eb(w)) ]   – [Yb(w)  - Eb(w)  )] }.
(13)

The GLRT for w in a range maximizes G(w) over the range. Note that the same statistic would be used were (11) to be additive instead of multiplicative.


To derive the GLRT for the continuous prospective case, divide (0,T) into a large number M of subintervals. Take the limit of the ratchet GLRT as M tends to infinity to get a statistic identical in form to (13) where Yb(w) and Eb(w) are now the observed and expected number of  events in (b-w, b).  

This prospective GLRT scan statistic based on (13) differs from the scan statistic used by Kulldorff [10; equations 1 and 2]. Kulldorff adapted a  statistic of the retrospective GLRT form (9) modified for prospective spatial-temporal surveillance. The statistic maximizes over a range of cylinders to scan for multiple circular spatial regions and time windows restricted to endpoints at the current time. At each current time t, the statistic is a function of the total number of points Nt up to that time. The background expectations for each cylinder is calculated as a fraction of Nt, adjusting for population at risk and other incidence related factors.  This approach provides a practical solution to estimating background rates where historical data is not available for the many possible spatial circles. In contrast, the approach based on (13) uses historical background rates and does not depend on Nt.  For temporal surveillance, if historical background rates (such as used in the Brucellosis example), or comparative rates(as in the neonatal arterial transpose operations example) are available, one would use them and the statistic (13).  


We next give the GLRT for the case where  X1, X2, …,XT are independent but not identically distributed binary random variables. Assume that under the null

 P(Xi=1) = ​i  for i=1,…T.


(14)

The pulse odds-ratio alternative is that for some unknown b,




P​A(Xi=1)/ PA(Xi=0) = ​i/(1-​i)   for i=b-w+1,…,b
             (15)

        =​i/(1-​i)        otherwise.

It can be shown that the GLRT for testing (15) against (14) rejects the null for large values of 

max b Yb( r)ln 
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where 
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This test is computationally complex as it requires solving an implicit equation for each value of b. 

Simulations and comparison with cusum
Our simulations focus on prospective grouped data where under the null, the counts for the  tth time interval has a Poisson distribution with expected value,
 





 Et(1) =  +  t.



            (16)

The P-scan procedure, GLRT’s, and a variant of CUSUM suitable for hypothesis testing, are compared.

The CUSUM procedure modified for a finite time frame

The CUSUM or cumulative sum, sounds an alarm if a moving sum exceeds limits. There are several variations of the statistic, with one being the proviso that the sum is set to 0 if there is no evidence favoring increased risk. Here we use the variant [22] where the quantity being summed is the same as the quantity on which the GLRT in (13) is based, so that the CUSUM statistic, here designated as C(t), is  given by

C(t)  = max [0,  C(t-1) + L(Yt(1), t)],

where L(Y,E) is the expression within curly brackets in (13).

The traditional CUSUM sounds an alarm at day i, if C(i) ( h, and this value of h is used to calculate average run lengths (ARL’s) under the null and alternatives of interest. ARL’s are widely used in quality control and other applications to evaluate CUSUM and other procedures.  Several authors [22-25] have noted that to evaluate CUSUM and other surveillance methods, one needs to consider the distribution of run lengths in addition to the ARL, and various criteria have been suggested in different scenarios. In bioterrorism surveillance, one is particularly concerned about a procedure’s probability of giving an alarm within a critical time.  Montgomery [23] notes that one reason that just evaluating  plans using ARL’s has been criticized is that under the null hypothesis the run lengths have a geometric distribution, highly skewed with large variability about the average  run length, and the ARL is not representative of the run lengths. Grigg et al [22] note that under the alternative hypothesis, the distribution of run lengths is not geometric and the process not memoryless, with the result that the CUSUM run length after the process goes out of control depends on how close to the boundary it is at that time.  

To compare the P-scan, GLRT, and CUSUM methods, we use the evaluation criteria suggested for a related CUSUM approach by Levin and Kline [26]. Instead of fixing the average time to a false alarm, they use the probability of a false alarm within a prespecified time period. Their null hypothesis is homogeneity using Poisson or binomial counts, and their alternative hypothesis involves pulse alternatives similar to those we use, but with unspecified window width. They note that their approach is not a GLRT, but that it does not require prespecifying the window width as in the fixed window width scan statistic. To compare the CUSUM with GLRT and P-Scan, select h so that the type I error, 

Pr( max 0 (t (T C(t) ( h], is a predetermined value . This is equivalent to requiring that P(run length > T |Ho)=1-, where run length is number of intervals until the first alarm.

Comparison of Operating Characteristics of Various Statistics

We first demonstrate the validity of the new approximation in (7) for distribution of the ratchet scan statistic when =0 in (16), corresponding to a constant null background. We compare the entire simulated distribution of Pr[Yt(w)(k] with approximation (7), for w=5, T=52, and Et(1) (3. 

k              33         32       31       30     29      28    27     26    25   24   23   22   21   20
Eqn (7)   .0015  .0034  .0072  .0147  .029  .055  .099  .17    .27  .41  .57  .73  .86  .94  

Simultn   .0011  .0033  .0075  .0144  .027  .051  .097  .16    .27  .40  .56  .71  .85  .93  

These results suggest that the approximation is accurate for w(5, as long as the increases from interval to interval are relatively small. 


We next evaluate the adequacy of (7) when the expected values vary. In (16), set to 2 and  to 0.06, so that the expected rates per time interval increase linearly from 2 to 4.94 or 4.82, for w=3 or 5 respectively.  Because of the discreteness of k, a meaningful comparison of type I errors requires either randomization or pseudo randomization, based on the most likely rule, as in (3). The type I error based on 20,000 simulations for the latter rule for various  were

:          .01      .05    .10     .20   .30    .50      .70    .90
w=3 
 
.010    .046  .099  .185  .288  .491     .705  .906  

w=5 

.010    .047  .096  .189  .285  .470     .673  .883 

The simulations suggest that using mid-p-values, gave actual type I error rates close to the nominal level over the entire range. The agreement of type I error with its nominal value using mid-p-values or randomization was about the same.

For w=3 and 5, Table 1 compares the simulated power (based on 10,000 replications) of the PSS based on w (denoted by PSS(w)), G(w), G(w-1),  G(max)= max[ G(w-2),

 G(w-1), G(w)], and the CUSUM  statistic given by max C(t). Simulations were performed with an excess superimposed on the expected values given by equation (16) with =2 and  = 0.06, so that for intervals 20 to 20+v-1

Et(1) =  +  t +  +  (t-20).


 (17)

Throughout the table, the expected number of excess cases is kept fixed at 15, and these are spread over v consecutive intervals, so that v[+0.5 (v-1)] =15. Setting =0 gives a pulse-like alternative while setting >0 gives an increasing excess of cases over the null rate.  Setting v = w, gives a series of alternatives for which PSS(w) or G(w) guess the width of the increase correctly.  

Table 1 shows, as might be expected, that for a pulse alternative in which the investigator knows the width of the pulse (v=w, =0), the GLRT(w) statistic and PSS(w)  had the greatest power. The CUSUM did best on the opposite extremes, where  was relatively large, and/or v(w. When v=w, and differences in power between the five statistics were small[For these alternatives, G(w-1), and therefore G(max), often did better than G(w) since they focused on the relatively larger increases.] 

The simulations under the null and alternative show that the tests used with a fixed-width window behave almost equivalently for the range of values studied. Under the null and under the alternative, the P-scan and GLRT statistics with fixed window-widths were highly correlated; Spearman correlations were greater than .999 over the entire range, and similar-sized Pearson correlations between G(w) and log[PSS(w)] were noted for .001< PSS(w) <.5. 
Our simulations show the accuracy of the simple approximation formula used to find p-values (or critical cluster sizes) for the P-scan test. The P-scan test is a simple test to apply in situations where it is vital to detect quickly sudden large spikes in incidence rates. It can be used together with other monitoring tests that depend less on specifying values of the interval of increased risk, such as the CUSUM tests.
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Appendix A: Proof of Equation (1)



We explain the approach for T/w = L an integer. Divide the time period (or trials) into L disjoint equal parts each of length w (intervals; trials). Let i denote the expected number of events in the ith part.  In scanning the L parts with a window of size w, the window first scans between  parts 1 and 2, then between  parts 2 and 3, and so on. Let Ei denote the event that nowhere in the scan between  parts i and i+1, does the scanning window contain ki or more points. We describe below how, given the i, one should choose the ki to give an overall level of significance. 

In the general background case,  

P( ( Ei) = P(E1) P(E2|E1) P(E3| E2(E1) P(E4| E3 ( E2(E1)……

(A.1)

Following the reasoning in Naus[27] for the uniform density case, approximate

P(Ej| Ej-1(Ej-2  …(E1) ( P(Ej| Ej-1), 

to yield the highly accurate approximation

  
 P( (i=1,…L-1 Ei) ( P( E1)  
[image: image12.wmf]Õ

-

=

2

1

L

i

 P(Ei| Ei-1)( QL ({ki},{ i).


(A.2)

In the constant background case, abbreviate QL ({k,k,…,k },{ ) by QL (k, ). If we can choose the critical k1 to make






P(E1) ( (1-) 1/(L-1) ,



(A.3)

and choose ki, i>1 to make

P(Ei| Ei-1) ( (1-) 1/(L-1) ,


(A.4)

then substituting (A.3) and (A.4) into (A.2) indicates that P( ( Ei) will be approximately 1-.  For the constant background case  P(Ei+1 | Ei) = P(E2 | E1) for all i, so that (A.2) simplifies to 

P( ( Ei) ( QL (k, )   = P( E1) {P(E2| E1)}L-2( {P(E2| E1)}L-1.
(A.5)

(The last approximation is based on noting that for L large, and  small, P(E1) will be close to P(E2 | E1).) To choose the critical ki for window  position between  parts i and i+1, set k = ki  and  = (ii+ in equation (A.5), and choose the critical k to set the right-hand- side of (A.5) equal to 1-. This gives

P(E2| E1) ( (1-) 1/(L-1) (P(E1) ( P(Ej| Ej-1).




(A.6)

 Substituting (A.6) into (A.2) gives

PSS = 1 - P( (i=1,…L-1 Ei) ( 1 - QL ({ki},{ i) ( .


(A.7)

Appendix B: Derivation of the approximation (7) for the Ratchet scan



Let the interval counts U1, U2,…, UT be independent and identically distributed Poisson variates, with E(Ui) = .  Let Yi(w) = Ui+…+Ui+w-1; Sw = Maxi{Yi(w) }; and Bi denote { Yi(w) <k}. Note that

P(Sw < k) = P((Bi) ( P(B1){P(B2|B1)}T-w = P(B1){P(B1(B2)/P(B1)}T-w .        (B.1)

Let  Z = U2 +…+Uw. From the Poisson distribution of the Ui, and independence of Z, U1, Uw+1,

P(B1) = F(k-1;w),




(B.2)

P(B1(B2) = P(Z+U1<k (  Z+Uw+1< k) = j<k P(Z=j)P(U1< k-j)P(Uw+1<k-j)


     =  j<k p(j;(w-1))F2(k-j-1|).




(B.3)

Substitute (B.2) and (B.3) into (B.1) to get approximation  (7).

Table 1: 

Power  of detecting  an excess of 15 expected cases over v intervals when T=52, 

        Et(1) =  +  t +  + (t-21), 
20 ( t ( 20+v-1




    -----------------------S t a t i s t i c------------------------------





   

GLRT                            CUSUM    
    Alternative   
 
      PSS(w)G(w)    G(w-1)    G(max)*

w  v 


3  2  5   5          .890      .890
  .935   .921       .900

3  3  5   0   
   .855      .856   .794   .828       .836 

3  3  4   1   
   .853      .854   .789   .831       .837             

3  3  3   2          .848      .848   .800   .840       .837

3  3  2   3   
   .858      .859   .834   .867       .857

3  3  1   4   
   .868      .869   .880   .900       .877     

3  4  1.5 1.5        .754      .756   .713   .762       .796

3  5  1   1          .670      .670   .611   .641       .715

3  5  3   0          .595      .596   .526   .558       .673

5  3  5   0   
   .774      .795   .810   .852       .822 

5  3  3   2          .787      .808   .827   .863       .837 

5  4  1.5 1.5        .757      .761   .795   .805       .791

5  5  3   0    
   .724      .728   .691   .698       .686  

5  5  2   0.5    
   .725      .728   .692   .711       .692            

5  5  1   1

   .733      .735   .743   .740       .726  

5  5  0.5 1.25       .756      .757   .778   .775       .762 

Note:

     * G(max)= max[ G(w-2), G(w-1), G(w)].
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