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SUMMARY

This study examines the statistical properties (that is, false positive and negative signals) in detecting unusual
patterns of reported cases of diseases from the Centers for Disease Control and Prevention's National
Noti"able Diseases Surveillance System. Control charts are applied to the residuals of one-step ahead
forecasts based on Box}Jenkins models of reported cases of disease. Simulation and analytical techniques
are used to study the average run length characteristics of these control charts for various types of changes in
the levels of the series, including spike, trend and step changes. The average run lengths for the highly
correlated disease series are much longer than for the usual independent data case. This increase in the
average run lengths is strongly in#uenced by the type of change in the level of the series and by the type of
control chart. Understanding the average run length characteristics of the control charts can lead to timely
detection of changes in the levels of disease series, and subsequent timely public health actions to decrease
unnecessary morbidity and mortality. Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

The National Noti"able Diseases Surveillance System (NNDSS) tracks weekly reported cases of
45 infectious diseases at the state and national levels. There is great interest in using the data from
the NNDSS to detect signi"cant aberrations, particularly increases, in the reported number of
cases of any of the 45 diseases tracked by the system. Seventeen diseases thought to have good
modelling potential were chosen from the NNDSS by Williamson and Weatherby.1 Although
state level data would be preferable for practical applications, the national level of reporting was
chosen for ease of modelling. Williamson and Weatherby successfully identi"ed and "t seasonal
autoregressive integrated moving average (ARIMA) models (Box and Jenkins2) for seven of the 17
chosen disease series. The successfully modelled diseases were hepatitis A, hepatitis B, hepatitis
non-A}non-B, legionellosis, malaria, meningococcal infections and tuberculosis.

This paper examines the application of statistical process control charts to the residuals from
one-step ahead forecasts of ARIMA modelled time series in order to detect signi"cant aberrations



in the level of the modelled process (Alwan and Roberts3). The average run length (ARL)
characteristics are found for four common control charts and four types of changes in the level of
the process.

The recursive relationship of the residuals, based on the results of Wardell et al.,4 is used to
simulate ARLs. The distribution of the residuals is derived and used in a Markov chain approach
similar to that of Lin and Adams5 to calculate ARLs analytically. The results of the simulation
and the analytical methods agree quite well. The results show that the ARLs are substantially
in#uenced by the seasonal behaviour of the models. Generally, the ARLs are much larger for the
control charts applied to residuals from the ARIMA models than for the control charts applied to
independent data, for which the charts were developed. Those models with the weakest seasonal
behaviour have the largest ARLs.

2. CONTROL CHARTS

2.1. The Shewhart Control Chart

The simplest form of the control chart is the Shewhart chart. In a Shewhart chart for monitoring
the level of a process, an observation at time t, x

t
, is used to indicate whether the process has

undergone some shift in its level. A value of Dx
t
D exceeding certain control limits indicates that the

process level has shifted from its previous level. Control limits are usually expressed in terms of
the process standard deviation and are chosen to give the chart a good balance between failing to
indicate a real shift in process level (a type II error) and indicating a shift when none has occurred
(a type I error). An important characteristic of the Shewhart chart is its rapid detection of large
shifts in the process level. However, the Shewhart chart is slow to detect small or moderate
changes in the process level.

2.2. The moving average control chart

The moving average (MA) control chart uses the moving average of observations of the process as
the control statistic and is more sensitive than the Shewhart chart to small shifts in the level of the
process. The control statistic of the MA chart with span m is given by

y
t
"

x
t~m`1

#x
t~m`2

#2#x
t

m
.

The chart signals when Dy
t
D exceeds control limits expressed as a multiple of the standard deviation

of y
t
. The particular multiple is chosen to give the chart good properties, as discussed for the

Shewhart chart. The larger the span of the MA chart, the more sensitive the chart is to small shifts
in the process level. In our study, we have used a span of two. Thus our MA chart may be
expected to provide somewhat better detection of small shifts in the process level than the
Shewhart chart.

2.3. The Exponentially Weighted Moving Average Control Chart

The exponentially weighted moving average (EWMA) control chart (Roberts6 and Hunter7) uses
the control statistic y

t
"(1!j)y

t~1
#jx

t
where 0(j)1 is a parameter of the chart. The chart

signals that the process level has changed when Dy
t
D exceeds control limits expressed as a multiple
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of the asymptotic standard deviation of y
t
. Again, the particular multiple is chosen to give the

chart good properties.
The EWMA chart is sensitive to small shifts in the process level for small values of j and to

large shifts in the process level for large values of j. Note that for j"1, the EWMA chart is
identical to the Shewhart chart. In our study, we have used j"0)25. This value of j is commonly
used in industrial applications and is within the range of 0)1 to 0)5 often suggested in the literature
for detecting shifts of one-half to one standard deviation of the process.

2.4. The Cumulative Sum Control Chart

The cumulative sum (CUSUM) control chart (Page8) is based on sums of observations and can be
sensitive to small shifts in the process level. The CUSUM chart uses one statistic for detecting
a positive shift in the process level and another statistic for detecting a negative shift in the process
level. The statistic for detecting a positive shift is y

t
"max(0, y

t~1
)#x

t
!h where h is a para-

meter of the chart. This CUSUM statistic accumulates evidence of a positive shift in the level of
the process. If there is no evidence of a positive shift, the CUSUM statistic resets to zero. The
CUSUM signals that a positive shift in the process level has occurred when y

t
exceeds the control

limit. As usual, the control limit is chosen to give the CUSUM chart good properties.
A similar procedure using y

t
"min(0, y

t~1
)#x

t
#h and signalling when y

t
is less than the

control limit is used to detect negative shifts in the process level. To detect both positive and
negative shifts in the process level, we have employed the standard procedure of using two
one-sided charts concurrently.

The CUSUM procedure can be derived from a sequential probability ratio test. This derivation
indicates that the value of h should be chosen as one-half of the shift in the level which should be
detected quickly. In our study, we used h"0)25, indicating that we want quick detection of a shift
of one-half of the standard deviation of the process.

3. THE AVERAGE RUN LENGTH

In studying the properties of control charts, the emphasis has been on determining the ARL of the
chart. The ARL of a chart is the expected number of samples to be taken (in our case the expected
number of weeks) before the chart indicates a shift in the process level. The ARL should be large
when there has been no change in the process, but the ARL should be small when the process has
undergone a change. Typically ARLs are evaluated for zero shift in the process level (in-control
ARLs) and for several shift values which should be detected quickly. After consulting with
epidemiologists at the Centers for Disease Control and Prevention, it was decided that in-control
ARLs should range from 4 to 52 weeks, depending on the disease being studied. Control limits
were chosen accordingly.

4. TYPES OF CHANGES IN THE PROCESSES

In this study, we examined four types of changes in the disease series. The four types of changes
are illustrated below:

(i) The step shift in the level of the series

.
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(ii) The impulse shift

.

(iii) The spike shift

.

(iv) The trend shift

.

Step, impulse and spike shifts of height one, two and three times p
a
, the standard deviation of the

residuals of the ARIMA model, were studied. Impulse shifts of 4, 8, 16 and 24 weeks duration and
trend shifts ranging from 0)1 p

a
to 1)0 p

a
per week were studied.

5. SIMULATION OF AVERAGE RUN LENGTHS

5.1. The Recursive Relationship of the Residuals

The ARIMA model for a disease series contains terms relating the current week to past weeks.
For example the ARIMA model for hepatitis A is

x
t
"x

t~1
#x

t~52
!x

t~53
#a

t
!0)86a

t~1
!0)79a

t~52
#0)6794a

t~53
where the x's are the square roots of the number of cases of hepatitis A and the a's are random
shocks, normally distributed random variables with mean zero and variance p2

a
(a&N(0, p2

a
)).

The square root transformation was used in the modelling process so that the normality of the
random shocks would be justi"ed. This model contains terms relating the current week, x

t
, to the

.previous week (x
t~1

and a
t~1

), as well as seasonal terms relating to the previous year (x
t~52

,
x
t~53

, a
t~52

and a
t~53

).
Following the approach of Wardell et al., we can derive a recursive relationship for the

residuals from one-step ahead forecasts based on the ARIMA models of Williamson and
Weatherby. For example, the relationship for hepatitis A is

R
t
"s

t
!s

t~1
!s

t~52
#s

t~53
#a

t
!0)86a

t~1
!0)79a

t~52
#0)6794a

t~53
#0)86R

t~1
#0)79 R

t~52
!0)6794R

t~53
where the s's are the levels of the shift. This equation relates the value of the residual at the present
time period, R

t
, to present values of the shift and the random shock, s

t
and a

t
, and to past values of

the shift (s
t~1

, s
t~52

and s
t~53

), the random shocks (a
t~1

, a
t~52

and a
t~53

) and the residuals (R
t~1

,
R

t~52
and R

t~53
). The presence of seasonal terms in the ARIMA model for hepatitis A leads to

the presence of seasonal terms in this relationship.

5.2. The Dynamic Behaviour of the Residuals

The above expression for the residuals illustrates the dynamic response of the residuals to a shift
in the process level described by Wardell et al. ARIMA models are adaptive forecasting models.
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When an ARIMA process undergoes a shift, the expected value of the forecast converges to a new
equilibrium level. The expected values of the residuals from the one-step ahead forecasts also
converge to a new equilibrium level, smaller in magnitude than the level of the shift. In the above
expression, the e!ect of the shift quickly disappears due to the s

t
!s

t~1
term. The expected values

of the residuals converge because the absolute values of the coe$cients of the random shock and
residual terms are less than one.

The seasonal terms in our ARIMA model introduce an echo e!ect in the behaviour of the
residuals. In the recursive relationship of the residuals, the shift value from a season in the past,
s
t~52

, appears, but it is reduced by the previous value of the shift, s
t~53

. Values of the random
shocks and residuals from a season in the past also appear, but with coe$cients that are less than
one in absolute value. After experiencing this echo shift, the expected values of the residuals
converge to a value that is smaller in magnitude than the shift.

5.3. Simulation

The normally distributed a
t
's were simulated. We then made use of the recursive relationship of

the residuals to generate R
t
, the residual at time t, and subsequently the control statistic based on

the residual. The run length, the number of steps taken until the control statistic exceeded the
control limits, was noted. The procedure was repeated 10,000 times, and the mean of those 10,000
run lengths was reported as the average run length.

6. ANALYTICAL CALCULATION OF AVERAGE RUN LENGTHS

6.1. The Distribution of the Residuals

In addition to the simulation method described in the previous section, we developed an
analytical method for calculating the ARLs of our control charts. Recognizing the recursive
relationship for the residuals as a di!erence equation for the unknown residual R

t
, we found

a series solution for R
t
. The series solution is R

t
"a

t
#s

t
#+ t

j/1
t
j
s
t~j

, where the t coe$cients
depend on the ARIMA model. Since a

t
&N(0, p2

a
), we have R

t
&N(k

t
, p2

a
), where

k
t
"s

t
#+ t

j/1
t
j
s
t~j

. We used this distribution of R
t
to calculate ARLs for each of the four

control charts as discussed in the next four sections.

6.2. ARLs for the Shewhart Control Chart

Since the run length (RL) of a control chart is a non-negative discrete random variable, we can
write ARL"+=

t/1
P (RL't) where P (RL't) is the probability that the run length exceeds t.

For the Shewhart chart based on the one-step ahead residuals, R
t
, from the ARIMA model, with

control limits at $CL, we have

P (RL't)"P (DR
0
D)CL)P (DR

1
D)CL)2P (DR

t~1
D)CL)"

t~1
<
i/0

P (DR
i
D)CL).

Thus

ARL"

=
+
t/1

t~1
<
i/0

P (DR
i
D)CL).

Using the fact that R
i
&N(k

i
, p2

a
), where k

i
"s

i
#+ i

j/1
t
j
s
i~j

, we can calculate the P (DR
i
D)CL)

and subsequently the ARL for the Shewhart chart for each disease.
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The in"nite sum in the above expression for the ARL of the Shewhart chart must be
approximated by a "nite sum in the actual calculation. In the program written for this calcu-
lation, the sum was terminated when <t~1

i/0
P(DR

i
D)CL)(10~5.

6.3. ARLs for the Moving Average Control Chart

The ARL of the MA chart with span two is calculated in a manner similar to that of the Shewhart
chart. The probabilities involved are more complicated due to the nature of the MA chart
statistic, but the basic approach is the same.

6.4. ARLs for the Exponentially Weighted Moving Average Control Chart

For the EWMA control chart based on the one-step ahead residuals from the ARIMA model,
a Markov chain approach similar to that of Lin and Adams is used. The distribution of the
residuals derived in Section 6.1 is used to calculate the transition probabilities in the Markov
chain. The approach is complicated in our problem by the seasonality of our models, but
a modi"cation of the Lin and Adams technique can be used to calculate the ARLs for the EWMA
chart.

6.5. ARLs for the Cumulative Sum Control Chart

The average run lengths for the CUSUM control chart were calculated using an approach similar
to that used for the EWMA chart. The only di!erence in the approaches is the use of one
CUSUM chart to detect upward shifts in the series and another CUSUM chart to detect
downward shifts in the series. The overall average run length for the CUSUM chart was
calculated in the usual way, using

1

ARL
"

1

ARL
61

#

1

ARL
$08/

.

The ARLs calculated using the above analytical methods agree quite well with those from the
simulation described earlier.

7. RESULTS

The general e!ect of correlation of the data series on the ARLs of control charts has been
described previously by Johnson and Bagshaw,9 Bagshaw and Johnson,10 Montgomery and
Mastrangelo,11 Wardell et al.12 and VanBrackle and Reynolds.13 In addition, the properties of
control charts based on residuals from one-step ahead forecasts of some simple time series models
have been described by Superville and Adams,14 Runger et al. 15 and Wardell et al.16 In general
the e!ect of positive correlation of the data leads to shortened in-control ARLs (a higher false
alarm rate) of control charts based on the data, if the usual control limits are used. If the control
limits are adjusted to take the correlation into account and achieve the desired in-control ARL,
the e!ect of the correlation is to delay detection of a shift in the level of the process.

Control charts based on residuals of one-step ahead forecasts of time series models exhibit
somewhat di!erent behaviour. The independence of the residuals yields in-control ARLs which
are identical to those for control charts based on independent data. However, the adaptive
behaviour of the residuals discussed above leads to delayed detection of shifts in the level of the
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Figure 1. ARLs for the Shewhart chart for a step shift

process. Control charts based on residuals have a window of opportunity for detecting process
shifts. The convergence of the expected value of the residuals to a value lower than the shift value
gives charts based on residuals a decreased probability of detecting process shifts after the "rst few
time periods following the shift. The seasonality of our ARIMA models does give the chart based
on residuals a second or third chance to detect a process shift one or two seasons after the shift,
but these second and third chances come too late to be of help in the rapid detection of shifts.
Consequently, control charts based on residuals from ARIMA models can have out-of-control
ARLs that are unacceptably high.

The results shown in the following "gures illustrate the in#uence of the adaptive behaviour of
the residuals on the ARLs of control charts based on the one-step ahead forecast residuals.

Figure 1 shows the ARLs calculated for the Shewhart chart for the independent, identically
distributed (i.i.d) data for which the chart was designed and for the residuals from the models for
hepatitis A, legionellosis and meningococcal infections. The control limits are chosen to give an
in-control ARL of 26 for all of the models. The shift is the step shift measured in units of p

a
, the

standard deviation of the residuals from the ARIMA model. The in#uence of the adaptive
behaviour of the residuals is clear; the ARLs for each of the disease models is higher than that for
the i.i.d. series at each of the shift levels. For a shift of one standard deviation, the ARLs for the
disease models are roughly two to three times the ARL of the i.i.d. series. For a shift of two
standard deviations, the disease model ARLs range from two to "ve times the i.i.d. ARL. This
e!ect is much smaller for the shift of three standard deviations, since the likelihood of detecting
such a large shift within the "rst few time periods after the shift is so high that the adaptive
behaviour of the residuals can have little e!ect.
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Figure 2. ARLs for hepatitis A for a step shift

It is interesting to note the di!erences in the behaviours of the di!erent models. The model for
legionellosis contains no seasonal terms. As a result, the adaptive behaviour of the residuals for
this model is strongest, with no echo e!ect due to seasonality. Consequently, the Shewhart chart
based on the residuals from the legionellosis model has the worst ARL behaviour of the models
shown in Figure 1.

As discussed in Section 5.2, the form of the model for hepatitis A causes the residuals to adapt
rather rapidly. The seasonal behaviour gives the residuals a second chance to detect the shift
before the residuals again adapt. Thus, the Shewhart chart based on the residuals from the
hepatitis A model has slightly lower ARLs than the chart for the legionellosis model.

The meningococcal infections model has weaker adaptive behaviour than the hepatitis
A model. The residuals from this model do not adapt very rapidly until after the "rst season (52
weeks). Since the residuals from this model have the weakest adaptive behaviour, the Shewhart
chart based on the residuals from the meningococcal infections model has the best ARL
characteristics of the disease models in Figure 1.

The remaining results in Figures 2 to 4 are shown for the hepatitis A model. Results are shown
for all four types of shift in the level of the process and for all four types of control charts. The
other disease series have similar results, di!ering only in severity according to the complexity and
the degree of seasonality of the model.

Figure 2 shows the ARLs for the step shift. Note that the ARLs are all greater than those for the
i.i.d. series in the previous "gure. It is clear from this "gure that the control charts which are
designed to accumulate evidence of a shift in the process, the EWMA and the CUSUM charts,
have superior detection ability in this situation. The EWMA and CUSUM ARL characteristics
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Figure 3. ARLs for hepatitis A for a spike shift

are almost identical, and their lines on the "gure are nearly indistinguishable. The MA chart, with
its short term accumulation of evidence, outperforms the Shewhart chart. The Shewhart chart has
the longest detection times of all, since the adaptive behaviour of the residuals quickly disguises
the shift in the process level.

The relative ARL characteristics of the control charts for an impulse shift are similar to those of
Figure 1. The ARLs are slightly lower than those for the step shift. The impulse shift consists of
two shifts in the process level, a shift up followed by a shift back down to the original level some
weeks later. This double shift gives the control charts two opportunities to detect the shift in the
process level. The residuals must adapt themselves to both shifts, and the control charts detect the
change slightly more quickly than for the step shift.

Figure 3 shows the ARL behaviour for the four control charts for a spike shift, a shift of one
week duration. Note the reversal of the ordering of the control charts in this "gure. While all of
the charts perform rather badly for this type of shift, the accumulating charts (MA, EWMA and
CUSUM) perform worse than the Shewhart chart. The spike shift gives no opportunity for the
accumulation of evidence of a shift in the process level. As the size of the shift increases, the
di!erence in the detection ability of the charts becomes even more pronounced. The region of
large shift is where the Shewhart chart typically performs best. With no evidence to accumulate,
the other charts cannot compete with the Shewhart chart.

Finally, Figure 4 illustrates the ARL characteristics of the control charts for a trend shift. The
shift level is measured from 0)1 p

a
per week to 1 p

a
per week. For the smaller values of the trend

shift, less than 0)5 p
a
per week, the ordering of the charts is as it was for the step shift. The EWMA

and CUSUM charts are again nearly identical in their ARL characteristics. The di!erence
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Figure 4. ARLs for hepatitis A for a trend shift

between the ARLs of all the charts is small, and they all perform well. For larger values of the
trend shift, the Shewhart chart performs slightly better than the others, but all of the charts detect
such large trend shifts quite well.

8. DISCUSSION

The ARL behaviour described above applies to the seven successfully modelled national level
disease series only. Much work remains to be done, both for those diseases already modelled and
for the other diseases monitored in the NNDSS. For the diseases already modelled, the e!ects of
varying the control chart parameters remain to be studied. The combined Shewhart}EWMA
chart was shown by Lin and Adams to be more e!ective than the traditional control charts for
simpler non-seasonal models. The usefulness of this chart for our more complicated seasonal
models remains to be evaluated. In addition, the characteristics of control charts applied to state
level data and to those disease series for which no good model could be found need to be
examined.

Other approaches to the modelling and detection problem also remain to be tried. A combined
spatial and time series modelling approach may yield useful results by detecting not only the time
of the aberration in a disease series, but also the location of that aberration. Bayesian modelling,
change point theory and neural net modelling approaches have yet to be tried on this problem,
but may have much to o!er in this context.

3318 L. VANBRACKLE AND G. D. WILLIAMSON

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 3309}3319 (1999)



REFERENCES

1. Williamson, G. D. and Weatherby Hudson, G. &A monitoring system for detecting aberrations in public
health surveillance reports', Statistics in Medicine, 18, 3283}3298 (1999).

2. Box, G. E. P. and Jenkins, G. M. ¹ime Series Analysis: Forecasting and Control, Holden-Day, San
Francisco, 1976.

3. Alwan, L. C. and Roberts, H. V. &Time-series modeling for statistical process control', Journal of Business
and Economic Statistics, 6, 87}95 (1988).

4. Wardell, D. G., Moskowitz, H. and Plante, R. D. &Run-length distributions of special-cause charts for
correlated processes', ¹echnometrics, 36, 3}16 (1994).

5. Lin, W. S. W. and Adams, B. M. &Combined control charts for forecast-based monitoring schemes',
Journal of Quality ¹echnology, 28, 289}301 (1996).

6. Roberts, S. W. &Control chart tests based on geometric moving averages', ¹echnometrics, 1, 239}250
(1959).

7. Hunter, J. S. &The exponentially weighted moving average', Journal of Quality ¹echnology, 18, 203}210
(1986).

8. Page, E. S. &Continuous inspection schemes', Biometrika, 41, 100}114 (1954).
9. Johnson, R. A. and Bagshaw, M. &The e!ect of serial correlation on the performance of CUSUM tests',

¹echnometrics, 16, 103}112 (1975).
10. Bagshaw, M. and Johnson, R. A. &The e!ect of serial correlation on the performance of CUSUM tests II',

¹echnometrics, 17, 73}80 (1976).
11. Montgomery, D. C. and Mastrangelo, C. M. &Some statistical process control methods for autocor-

related data', Journal of Quality ¹echnology, 23, 179}193 (1991).
12. Wardell, D. G., Moskowitz, H. and Plante, R. D. &Control charts in the presence of data correlation',

Management Science, 38, 1084}1105 (1992).
13. VanBrackle, L. N. and Reynolds, M. R., Jr. &EWMA and CUSUM control charts in the presence of

correlation', Communications in Statistics } Simulation and Computation, 26, 979}1008 (1997).
14. Superville, C. R. and Adams, B. M. &An evaluation of forecast-based quality control schemes', Commun-

ications in Statistics } Simulation and Computation, 23, 645}661 (1994).
15. Runger, G. C., Willemain, T. R. and Prabhu, S. &Average run lengths for CUSUM control charts applied

to residuals', Communications in Statistics } ¹heory and Methods, 24, 273}282 (1995).
16. Wardell, D. G., Moskowitz, H. and Plante, R. D. &Run-length distributions of residuals control charts for

autocorrelated processes', Journal of Quality ¹echnology, 26, 308}317 (1994).

RUN LENGTH OF NATIONAL NOTIFIABLE DISEASES SURVEILLANCE SYSTEM 3319

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 3309}3319 (1999)


