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Definition

Estimation Risk (ER) = uncertainty about the

true values of some model parameters

Comments:

i) Samples are finite ⇒ estimates are different

from true parameters.

ii) ER exists even for a well-specified paramet-

ric model.
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Basic example:
Markowitz Portfolio choice

Objective: build the best portfolio among a

set of n financial assets, for a given known

measure of performance, in presence of a risk-

free asset.

Recall the classic definition of portfolio opti-

mality (Markowitz 59, 87): a portfolio is effi-

cient if it has the least risk for a given level of

expected return

Optimization problem:

max
θ

[
θ′µ− η

2
θ′Σθ

]
= max

θ
[U(θ)]

with θ weighting vector, R (n,1)-vector of risky

returns with mean µ and variance Σ, η level of

risk aversion of the investor.
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Solution:

θ∗ =
1

η
Σ−1(µ−Rf ι)

→ This is a 2-fund rule: holding the riskless

asset and the tangency portfolio.

Difficulties: optimal rule is unfeasible in the

sense that the true parameters characterizing

the portfolio (here µ and Σ) are unknown.

Naive ”plug-in” method (Markowitz 59): true

unknown parameters are simply replaced by

some estimates.

→ ER is ignored

→ Optimality of the estimated rule?

⇒ Can we incorporate ER in the selection method?
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A (natural) Bayesian method:

Large literature.

Pioneer work by Zellner and Chetty (1965) and

Bawa, Brown and Klein (1979)

Main ideas:

• Choose a prior on the distribution of µ and

Σ

• Update this a priori distribution with the

data sample and build the a posteriori dis-

tribution

• Integrate out the parameters over the a

posteriori distribution: this gives the pre-

dictive distribution
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• Maximize the expected utility under the pre-
dictive:

θ̂Bayes = argmax
θ

∫

RT+1

∫

µ

∫

Σ
U(θ)p(RT+1, µ,Σ|ΦT)dµdΣdRT+1

= argmax

∫

RT+1

U(θ)p(RT+1|ΦT)dRT+1

where p(RT+1|ΦT) is the predictive density

Solution (with a diffuse prior), a 2-fund rule:

θ̂Bayes =
1

η

(
T −N − 2

T + 1

)
Σ̂−1ˆ̃µ

Result: Plug-in estimators methods are out-

performed by diffuse prior Bayesian method.

→ Choice of the prior?

→ Closed-form solution?
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Non-bayesian methods 1:

General idea: minimize the expected loss of

utility resulting in using an approximated rule

θ = argmin
θ∈R

Eµ̂,Σ̂
[
U(θ∗)− U(θ)

]

where θ∗ is the unfeasible optimal rule and R

the set of all admissible investment rules.

Comments:

i) Consistent from the point of view of the

theory of decision

ii) The class of rules is too wide and the prob-

lem too hard to be solved
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→ Optimization within a restricted class of

rules:

- ter Horst, de Roon and Werker (HRW):

2-fund rules and ER from variance ignored.

- Kan and Zhou (KZ):

a) 2-fund rules with both ER from mean and

variance incorporated.

b) 3-fund rules with both ER from mean and

variance incorporated.
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¦ ter Horst, de Roon and Werker (HRW):

Minimization of a risk function based on the

expected utility loss generated by using esti-

mators, for a parametric form of the weighting

vector ensuring a 2-fund rule (Σ known):

θHRW = argmin
α

Eµ̂

[
U(θ∗)− U(θ̂(α))

]

with θ̂(α) =
1

α
Σ−1ˆ̃µ

θHRW =
θ2

θ2 + N/T

1

η
Σ−1µ̃

where θ2 = µ̃Σ−1µ̃

Note: the optimal rule depends on the un-

known parameter (µ), so is unfeasible.

→ Optimality of the feasible rule?
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¦ Kan and Zhou (KZ):

Consider a weighting function of the estimated
mean and variance where the class of functions
of interest is restricted to the 2-fund portfolio
rules.
Exploration of a 3-fund rules by investing in
addition into the sample global MV portfolio.

θKZ2 = argmax
κ1

Eµ̂,Σ̂

[
U(

κ1

η
Σ̂−1µ̂)

]

θKZ2 =
(T −N − 4)(T −N − 1)

T (T − 2)

θ2

θ2 + N/T

1

η
Σ−1µ̃

where θ2 = µ̃′Σ−1µ̃

Result: Bayesian diffuse prior methods are out-
performed by unfeasible KZ-2-fund rule

Note: both rules depend on the unknown pa-
rameters (µ,Σ), so are unfeasible.
→ Optimality of the feasible rules?
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Non-Bayesian Methods 2:

¦ Garlappi, Uppal and Wang (GUW):

Sequential max-min method (Σ known).
1) minimization of the expected utility with
respect to the returns falling into a confidence
set around the estimated returns
2) maximization of the resulting utility with
respect to the weights.

θGUW = argmax
θ

min
µ∈CI(µ̂)

U(θ)

θGUW = max

{
1−

√
ε√
θ̂2

,0

}
1

η
Σ−1ˆ̃µ

with ε =
NFN,T−N(p)

T −N
, p = .99 , θ̂2 = ˆ̃µ′Σ−1ˆ̃µ

→ Is the worst possible scenario optimal from
a financial point of view?
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Non-Bayesian Methods 3:

¦ Antoine (A):

1) Perform a one-sided test that insures that
the chosen measure of performance of the port-
folio is above a given threshold ie H0 : QP > c
2) Maximize the p-value of the above test to
get the optimal weights.

Measure of Performance: MV for comparison
with literature
Threshold: perf. of the benchmark to beat

Why a test?
1) statistical tool to compare random quanti-
ties
2) naturally incorporates ER
3) direct focus on a well-defined objective for
a portfolio manager

Restrictions:
- Asset returns are serially independent
- ER coming from the variance is neglected
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More formally:

¦ Test: H0 : µP − η/2σ̂2
P > c

¦ Test statistic:

T =
µ̂P −

(
c + η/2σ̂2

P

)

σ̂P/
√

T

¦ p-value of the test:

p− value = P (T ≤
µ̂P −

(
c + η/2σ̂2

P

)

σ̂P/
√

T
)

¦ Maximization Problem:

max
θ

√
T [θ′ˆ̃µ− c− η/2θ′Σθ]

(θ′Σθ)1/2

¦ Solution, 2-fund rule:

θA =
Σ−1ˆ̃µ

η̃
and η̃ = η

√
U(θ̂MV )√

c

12



Comparison of investment rules:

1) Objective function:

- maximization of some measure of performance

of the portfolio (Bayes, HRW, KZ, GUW)

- maximization of the p-value of the test that

the performance is above a given threshold

2) Investment Rule:

θ =
1

η̃
Σ−1ˆ̃µ

where the corrected risk-aversion parameter

depends on the method used.

a) Feasible 2-fund rules (Bayes, GUW, A) vs

Unfeasible rules (KZ, HRW)

b) Natural 2-fund rules (Bayes, GUW, A) vs

Imposed 2-fund rules (KZ, HRW)
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c) Increase in the risk-aversion parameter η̃ > η

(Bayes, GUW, HRW, KZ) vs η̃A > or < η

d) When T →∞ (ie when ER disappears) the

rule tends to the exact MV rule (Bayes, GUW,

HRW, KZ) vs no dependence on T (the p-

value maximization does not make any sense

in absence of ER, since the performance would

be deterministic)

3) Other features:

a) The p-value framework is consistent with

any utility function and not just MV-type util-

ity that has been chosen to compare with the

literature.

b) The p-value framework is flexible enough to

accommodate for other estimates.
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4) Simulation Exercise

- 5 risky assets and a riskless asset
- the risky returns follow a multivariate normal
distribution
- the true model parameters obtained from
monthly unhedged returns of stock indices for
the G5 countries over the period January 1974
to December 1998.

Moyenne Std
France 0.014 0.069

Germany 0.013 0.059
Japan 0.011 0.067
UK 0.015 0.073
USA 0.012 0.044

ρ0 =




1 .590 .390 .541 .456
1 .338 .424 .347

1 .342 .221
1 .506

1




Estimators calculated with a rolling window of

size T.
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We compare:

- A for 3 different choices of the threshold A1,

A2 and A3 with resp. c = 1.1Rf , 1.2Rf , 1.3Rf ;

- GUW;

- KZ: feasible 2-fund rule (KZ2) and feasible

3-fund rule (KZ3)

Criteria of Comparison:

i) Stability of the positions trough time via

transaction costs

ii) Profitability of the method via average util-

ity



i) Stability of the rules via the transaction
costs:

T A1 A2 A3 KZ KZ3 GUW MV
60 14.16 20.02 24.52 33.35 33.96 3.82 69.52
120 8.15 11.52 14.11 20.44 17.29 4.90 31.64
180 5.94 8.41 10.29 15.01 12.06 5.09 20.58
240 4.65 6.57 8.05 11.93 9.19 4.85 15.18
300 3.73 5.28 6.46 9.98 7.66 4.64 12.06

ii) Mean utility over the whole period:

T A1 A2 A3
60 0.0009 0.0009 0.0008
120 0.0013 0.0015 0.0016
180 0.0015 0.0018 0.0019
240 0.0016 0.0020 0.0022
300 0.0017 0.0021 0.0023

KZ KZ3 GUW MV
-0.0003 -0.0003 0.0001 -0.0085
0.0009 0.0010 0.0006 -0.0015
0.0014 0.0015 0.0010 0.0003
0.0019 0.0017 0.0014 0.0012
0.0021 0.0018 0.0017 0.0016
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To go further:

Parameter uncertainty implicitly supposed than

the reference model is correct - ER is really the

risk coming from the estimation of the param-

eter of the (true) model.

→ what if there is uncertainty about the model?

Some work has been done to develop robust

methods to model risk (MR)

- Local deviation (à la Huber): you consider

some reference model; then you incorporate

some perturbation; typically you some proba-

bility distribution on several models.

See Cavadini, Sbuelz, Trojani: extension of

HRW with incorporation of MR via local de-

viation
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- GUW: direct extension of their methods to

incorporate MR when the investor relies on a

factor model to estimate the returns

1) minimization of the expected utility with

respect to the means of the assets and the

factors falling into a confidence set around the

estimated ones

2) maximization of the resulting utility with

respect to the weights.

- Model averaging: use several models to de-

duce the associated optimal rule and then av-

erage over the rules.
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