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Overview

• Apply stochastic time change to Lévy processes:

– Lévy processes can generate non-normal return innovations.

– Stochastic time changes generate stochastic volatility.

– Correlation between the two captures the “leverage effect”.

⇒ Our framework encompasses almost all extant option pricing models

and points to new directions for designing new models.

• What we do:

– Derive the generalized characteristic function (CF) of the time-changed Lévy

process.

– Propose FFT algorithms to price European-style options via this generalized CF.

– Specification analysis (model design, examples).
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Related Literature

• Affine jump-diffusion stochastic volatility models of Duffie, Pan, Singleton (2000):

– Finite-activity compound Poisson jumps: Jumps are regarded as rare events.

Evidence: Asset prices display many small jumps on a finite time scale:

⇒ Infinite-activity jumps may perform better.

– Affine volatility dynamics:

A linear-quadratic structure is more flexible for incorporating correlations.

• Time-changed Lévy processes:

– The Lévy process can accommodate both low and high frequency jumps.

– Stochastic time change can accommodate both affine and quadratic volatility

dynamics.

– Stochastic volatility can be driven by stochastic diffusion variance or stochastic

jump arrival rate, or both.

– Flexible correlations between return and volatility are possible.
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Lévy Processes and the Lévy-Khintchine Formula

• X : a d-dimensional Lévy process: rcll (right continuous with left limits), stationary

independent increments, stochastic continuity.

• Defined on a probability space (Ω,F , P ) endowed with a standard complete filtration

F = {Ft|t ≥ 0}.
• The Lévy-Khintchine formula for the characteristic function of Xt:

φXt(θ) ≡ E
[
eiθ>Xt

]
= e−tΨx(θ), t ≥ 0, θ ∈ Rd

where the characteristic exponent Ψx(θ), θ ∈ Rd, is given:

Ψx(θ) ≡ −iµ>θ +
1

2
θ>Σθ −

∫

Rd−{0}

(
eiθ>x − 1 − iθ>x1|x|<1

)
Π(dx).

• Lévy characteristics: (µ, Σ, Π), with µ a d-vector, Σ a semi-definite symmetric d×d

matrix, and Π : Rd − {0} 7→ R+ a measure with some integrability properties.

• The generalized Fourier transform (or CF): θ ∈ D ⊆ Cd.
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Stochastic Time Change

• Let t → Tt, t ≥ 0 be an increasing rcll stochastic process such that for each fixed t,

the random variable Tt is a stopping time with respect to Ft.

• Tt is finite P -a.s. for all t ≥ 0 and Tt → ∞ as t → ∞.

• The family of stopping times {Tt; t ≥ 0} defines a stochastic time change.

• Define Y by evaluating X at T , i.e.

Yt ≡ XTt, t ≥ 0.

• We use the time changed Lévy process, Y , as the source of all uncertainty in the

economy.
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Lévy Subordinators

• The random time Tt can be modeled as a nondecreasing semimartingale:

Tt = αt +

∫ t

0

∫ ∞

0

zµ(dz, ds)

• Example: Lévy subordinators as random time changes:

Tt =

∫ t

0

∫ ∞

0

zΠ(dz)ds

– Bertoin (1999): A Lévy process time changed by a Lévy subordinator yields a new

Lévy process.

– We can always suppress the subordinator by directly specifying the appropriate

Lévy characteristics for X .
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Business Activity Rates

• We focus on locally predictable time changes:

Tt = αt =

∫ t

0

v(s−)ds.

• We call v(t) the instantaneous (business) activity rate.

• Economic Interpretations:

– t — calendar time; T — business time.

– v(t) captures the intensity of the business activity at calendar time t.

• If X is SBM, then v(t) is the instantaneous variance rate of Yt ≡ XTt.

• if X is a pure jump Lévy process, then v(t)Π(dy) is the arrival rate of a jump of size

y in Y .

• Although Tt is assumed to be continuous, v(t) can jump.
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Encompassing Extant Models

• Heston (1993): Xt = Wt, v(t) follows a mean-reverting square-root process.

• Hull and White (1987): Xt = Wt, v(t) follows an independent log-normal process.

• Affine jump-diffusion of Duffie, Pan, Singleton (2000):

Xt is diffusion plus compound Poisson jumps; v(t) follows affine dynamics.
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Independent Time Change

• v(t) evolves independently of Xt, e.g. Hull and White (1987), no leverage effect.

• The characteristic function of the time changed Lévy process Yt = XTt is

φy(θ) ≡ Eeiθ>XTt = E
[
E

[
eiθ>Xu

∣∣∣Fv
t

]]
= E

[
E

[
eiθ>Xu

∣∣∣ Tt = u
]]

= Ee−TtΨx(θ) = LT (Ψx(θ))

which is the Laplace transform of the stochastic time Tt =
∫ t

0
v(s−)ds, evaluated

at the characteristic exponent of X .

• To obtain the Laplace transform of T in closed form, consider its specification in

terms of the activity rate:

LT (λ) ≡ E

[
exp

(
−λ

∫ t

0

v(s−)ds

)]

analogous to the bond pricing formula if we regard v(t) as analogous to the instan-

taneous spot interest rate. Hence, we can “borrow” closed form solutions for zero

coupon bonds that arise under affine, quadratic term structure models, etc.
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The General Case of Correlated Time Changes

• More generally, the generalized CF of Yt ≡ XTt under measure P can be represented

as the “Laplace transform” of Tt under a new complex-valued measure Q(θ),

evaluated at the characteristic exponent Ψx(θ) of Xt,

φYt(θ) ≡ E
[
eiθ>Yt

]
= Eθ

[
e−TtΨx(θ)

]
≡ Lθ

Tt
(Ψx(θ)) . (1)

• For each θ ∈ D, Q(θ) is absolutely continuous with respect to P and is defined by

E
dQ(θ)

dP
|FTt

≡ Mt(θ) ≡ exp
(
iθ>Yt + TtΨx(θ)

)
, θ ∈ D, (2)

which is a complex valued P -martingale with respect to {FTt|t ≥ 0}, for each

θ ∈ D.
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Intuition and Theorem Proof

• Why is Mt(θ) ≡ E dQ(θ)
dP |FTt

= exp
(
iθ>Yt + TtΨx(θ)

)
, θ ∈ D a P martingale?

– Recall the familiar Wald martingale defined on a Lévy process

Zt(θ) ≡ exp
(
iθ>Xt + tΨx(θ)

)
.

– Time change (i.e. replacing t by Tt) preserves the martingality.

• Theorem proof:

E
[
eiθ>Yt

]
= E

[
eiθ>Yt+TtΨx(θ)−TtΨx(θ)

]

= E
[
Mt(θ)e−TtΨx(θ)

]
= Eθ

[
e−TtΨx(θ)

]
≡ Lθ

Tt
(Ψx(θ)) .

• The complex-valued measure loses its probabilistic interpretation, but the mathemat-

ical operation remains valid.

• Under measure Q(θ), we can take “expectations” as if there is no correlation ⇒
leverage-neutral measure.
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Asset Pricing under Time-Changed Lévy Processes

• Let St be the time-t price of a limited liability asset under statistical measure:

St ≡ S0e
ϑ>Yt, t ≥ 0, for given S0 > 0, where recall Yt ≡ XTt.

• The generalized CF of the log return st ≡ ln(St/S0) is

φs(θ) ≡ E
[
eiθst

]
= E

[
eiθϑ>Yt

]
= Lθϑ

T (Ψx(θϑ)), t ≥ 0, θϑ ∈ D ⊆ Cd.

• Let Ft(M) be the M maturity forward price at time t ∈ [0, M ]. To value most

European-style claims maturing at M , specify F as a positive martingale

Ft(M) ≡ F0(M)eϑ>Yt+T>
t Ψx(−iϑ), t ∈ [0, M ]

under an M−forward measure. Tt is now a vector of stochastic clocks so that

eϑ>Yt+T>
t Ψx(−iϑ) is an exponential martingale.

• The generalized CF of the terminal log return fM ≡ ln(FM (M)/F0(M)) is

φf(θ) ≡ E
[
eiθfM

]
= Lθϑ

T (Ψx(θϑ) − iθΨx(−iϑ)).
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Specification Analysis Ia

Lévy processes and Characteristic Exponents:

Lévy Components Lévy Density Π(dx)/dx Characteristic Exponent Ψ(θ)

Pure Continuous Lévy component

µt + σWt — −iµθ + 1
2
σ2θ2

Finite Activity Pure Jump Lévy components

Merton (76) λ 1√
2πσ2

j

exp

(
−(x−α)2

2σ2
j

)
λ

(
1 − eiθα−1

2σ2
j θ

2
)

Kou (99) λ 1
2η

exp
(
− |x−k|

η

)
λ

(
1 − eiθk 1−η2

1+θ2η2

)

Eraker (2001) λ1
η
exp

(
−x

η

)
λ

(
1 − 1

1−iθη

)
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Specification Analysis Ib

Lévy processes and Characteristic Exponents: Infinite Activity Jumps

Lévy ComponentsLévy Density Π(dx)/dx Characteristic Exponent Ψ(θ)

NIG eβx δα
π|x|K1(α|x|) −δ

[√
α2 − β2 −

√
α2 − (β + iθ)2

]

Hyperbolic eβx

|x|

[∫ ∞
0

e−
√

2y+α2|x|

π2y
(
J2
|λ|(δ

√
2y)+Y 2

|λ|(δ
√

2y)
)dy − ln

[ √
α2−β2√

α2−(β+iθ)2

]λ [
Kλ

(
δ
√

α2−(β+iθ)2
)

Kλ

(
δ
√

α2−β2
)

]

+1λ≥0λe−α|x|)

CGMY

{
Ce−G|x||x|−Y −1, x < 0,

Ce−M |x||x|−Y −1, x > 0
CΓ(−Y )

[
MY − (M − iθ)Y + G − (G + iθ)Y

]

VG
µ2
±

v±

exp
(
−µ±

v± |x|
)

|x| λ ln
(
1 − iuα + 1

2σ
2
ju

2
)

(µ± =

√
α2

4λ2 +
σ2

j

2
± α

2λ
, v± = µ2

±/λ)

LS c|x|−α−1, x < 0 −cΓ(−α) (iθ)α
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Specification Analysis IIa

Activity Rate Dynamics and the Laplace Transform :

Affine: Duffie, Pan, Singleton (2000)

Activity Rate Specification v(t) Laplace Transform LTt(λ) ≡ E
[
e−λTt

]

v(t) = b>
v Zt + cv,

µ(Zt) = a − κZt,[
σ(Zt)σ(Zt)

>]
ii

= αi + β>
i Zt,[

σ(Zt)σ(Zt)
>]

ij
= 0, i 6= j,

γ(Zt) = aγ + b>
γ Zt.

exp
(
−b(t)>z0 − c(t)

)
,

b′(t) = λbv − κ>b(t) − 1
2
βb(t)2

−bγ (Lq(b(t)) − 1) ,

c′(t) = λcv + b(t)>a − 1
2
b(t)>αb(t)

−aγ (Lq(b(t)) − 1) ,

b(0) = 0, c(0) = 0.

15



Specification Analysis IIb

Activity Rate Dynamics and the Laplace Transform :

Generalized Affine: Filipovic (2001)

Activity Rate Specification v(t) Laplace Transform LTt(λ) ≡ E
[
e−λTt

]

Af (x) = 1
2
σ2xf ′′(x) + (a′ − κx)f ′(x)

+
∫

R+
0

(f (x + y) − f (x) + f ′(x) (1 ∧ y))

(m(dy) + xµ(dy)) ,

a′ = a +
∫

R+
0

(1 ∧ y) m(dy),∫
R+

0

[
(1 ∧ y) m(dy) +

(
1 ∧ y2

)
µ(dy)

]
< ∞.

exp (−b(t)v0 − c(t)) ,

b′(t) = λ − κb(t) − 1
2σ

2b(t)2

+
∫

R+
0

(
1 − e−yb(t) − b(t)(1 ∧ y)

)
µ(dy),

c′(t) = ab(t) +
∫

R+
0

(
1 − e−yb(t)

)
m(dy),

b(0) = c(0) = 0.
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Specification Analysis IIc

Activity Rate Dynamics and the Laplace Transform
Quadratic: Leippold and Wu (2002)

Activity Rate Specification Laplace Transform

v(t) LTt(λ) ≡ E
[
e−λTt

]

µ(Z) = −κZ, σ(Z) = I,

v(t) = Z>
t AvZt + b>

v Zt + cv.

exp
[
−z>0 A (t) z0 − b (t)> z0 − c (t)

]
,

A′(t) = λAv − A (t) κ − κ>A (τ ) − 2A (t)2 ,

b′(t) = λbv − κb(t) − 2A (t)> b (t) ,

c′(t) = λcv + trA (t) − b(t)>b(t)/2,

A(0) = 0,b(0) = 0, c(0) = 0.
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Specification Analysis IIIa

Correlations and Measure Changes

• Correlation via diffusions: Example

Xt = Wt, dv(t) = (a − κv(t))dt + η
√

v(t)dZt, dWtdZt = ρdt.

– Measure change:

dQ(θ)

dP

∣∣∣∣
Ft

= exp

(
iθYt +

1

2
θ2

∫ t

0

v(s)ds

)
.

– v(t) dynamics under Q(θ): dv(t) = (a− (κ− iθηρ)v(t))dt + η
√

v(t)dZt, which

remains affine.
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Specification Analysis IIIa

Correlations and Measure Changes: Correlation via jumps:

• Example

Xt = Lα,−1
t , dv(t) = (a − κv(t)) dt − β1/αdLα,−1

Tt
,

where Lα,−1
t denotes a standard Lévy α-stable motion with tail index α ∈ (1, 2] and

maximum negative skewness.

• Measure change:

dQ(θ)

dP

∣∣∣∣
Ft

= exp
(
iθLα,−1

Tt
+ Ψx(θ)Tt

)
, Ψx(θ) = − (iθ)α sec

πα

2
, Im (θ) < 0.

• Under this new (leverage-neutral) measure, Πθ(dx) = eiθxΠ(dx), and v(t) satisfies

generalized affine:

Lθ
Tt

(Ψx (θ)) = exp (−b(t)v0 − c(t)) . (3)
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Pricing State Contingent Claims

• Consider a payoff at a given fixed time M which is any linear combination of the

following payoffs:

ΠY (k; a, b, ϑ, c) =
(
a + beϑ>YM

)
1c>YM≤k

• Examples of claims covered by the above structure include:

– European call with strike K: Π(ln(F0(M)/K);−K, F0(M), ϑ,−ϑ),

– European put with strike K: Π(ln(K/F0(M)); K,−F0(M), ϑ, ϑ),

– A protected put: max[SM , K] = Π(ln(F0(M)/K); 0, F0(M), ϑ,−ϑ)+Π(ln(K/F0(M)); K, 0, 0, ϑ),

– A binary call: Π(ln(F0(M)/K); 1, 0, 0,−ϑ).

where recall that Ft(M) = F0(M)eϑ>Yt is the M maturity forward price of the

underlying asset at time t ∈ [0, M ].

• State price: Let G(k; a, b, ϑ, c; M) denote the price of such a claim. We can compute

G with two transform methods using φY .
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Transform I

• Let GI(z; a, b, ϑ, c) denote a Fourier transform of state price G(k; a, b, ϑ, c), defined

as

GI(z; a, b, ϑ, c) ≡
∫ +∞

−∞
eizkdG(k; a, b, ϑ, c), z ∈ R. (4)

• GI(z; a, b, ϑ, c) can be written as an affine function of the generalized Fourier trans-

form of YM :

GI(z; a, b, ϑ, c) = aφY (zc) + bφY (zc − iϑ).

• The price G(k; a, b, ϑ, c) can then be obtained by inversion:

G(k; a, b, ϑ, c) =
GI

0

2
+

1

2π

∫ ∞

0

eizkGI(−z; a, b, ϑ, c) − e−izkGI(z; a, b, ϑ, c)

iz
dz,

where GI
0 = GI(0; a, b, ϑ, c) = a + bφY (−iϑ).

Note that this is a one-dimensional inversion regardless of the dimensionality of the

uncertainty YM .
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Transform II

• Define a second transform GII(z; a, b, ϑ, c):

GII(z; a, b, ϑ, c) ≡
∫ +∞

−∞
eizkG(k; a, b, ϑ, c) dk, z ∈ C ⊆ C.

GI(z; a, b, ϑ, c) ≡
∫ +∞

−∞
eizkdG(k; a, b, ϑ, c), z ∈ R.

Note the two differences between GI and GII.

• GII, when well-defined, is given by:

GII(z; a, b, ϑ, c) =
i

z
(aφY (zc) + bφY (zc − iϑ)) .

• Inversion:

G(k) =
1

2π

∫ izi+∞

izi−∞
e−izkGII(z; a, b, ϑ, c)dz.

• This inversion can be performed numerically using FFT or Fractional FFT, generating

superior computational efficiency. By vectorizing in maturity, the model’s option

values at all strikes and maturities can be obtained in one stroke.
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Transform II: The Dampening Factor

The choice of Im z is crucial and depends upon the payoff structure.

Contingent Generalized transform Restrictions

Claim −izϕ(z) on Im z

G(k; a, b, ϑ, c) aφY (zc) + bφY (zc − iϑ) (0,∞)

G(−k; a, b, ϑ, c) aφY (−zc) + bφY (−zc − iϑ) (−∞, 0)

eαkG(k; a, b, ϑ, c) aφY ((z − iα)c) + bφY ((z − iα)c − iϑ) (α,∞)

eβkG(−k; a, b, ϑ, c) aφY (−(z − iβ)c) + bφY (−(z − iβ)c − iϑ) (−∞, β)

eαkG(k; a1, b1, ϑ1, c1) a1φY ((z − iα)c1) + b1φY ((z − iα)c1 − iϑ1)

+eβkG(−k; a2, b2, ϑ2, c2) +a2φY (−(z − iβ)c2) + b2φY (−(z − iβ)c2 − iϑ2) (α, β)

(α, β, a, b are real constants with α < β.)
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Summary

• We provide a powerful tool in generating tractable option pricing models.

– Apply stochastic time change to Lévy processes

– Prove a theorem that facilitates the derivation of the CF.

– Price options via transform methods.

• Applications: Model design and calibration

– Huang and Wu (JF 2004): Specification analysis for equity index options

– Carr and Wu (wp, 2004): Stochastic skew in currency options

– Bakshi, Carr, and Wu (wp, 2004): Stochastic discount factors in international

economies.

24


