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II. Nonparametric estimation of Lévy densities based on continuous
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I. Motivation

1. Exponential Lévy models are some of the simplest and most practical

alternatives to the shortfalls of the Black-Scholes model.

2. Exponential Lévy model can capture some stylized empirical features of

historical returns; e.g. heavy tails, high kurtosis, and asymmetry.

3. Limitations: Lack of stochastic volatility, leverage, long-memory of absolute

values, etc.

4. As a good “first-order” approximation model: Ideal to test statistical

calibration methods.

5. Statistical issues: computationally expensive and numerically instable to

estimate by traditional likelihood-based methods
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II. Nonparametric estimation based on continuous

observations

1. Why to study estimation based on continuous observations?

(a) Provides Benchmarks for estimation methods based on discrete

observations.

(b) Serve as devises to construct discrete-based procedures by

approximating the statistics underlying the continuous-based methods.

2. Standing assumptions:

(A) Statistics of the form ∑

t≤T

ϕ (∆Xt) ,

can be computed for ϕ : R\{0} → R.
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(B) On an estimation window D ⊂ R\{0}, the Lévy measure ν(dx)
can be written as

ν(dx) = s(x) η(dx), x ∈ D,

for a known measure η such that s is positive, bounded, and
∫

D

s2(x)η(dx) < ∞.

Notation: s is said to be the Lévy density on D of the process with

respect to the reference measure η.
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3. Formulation of the problem:

Estimate directly the Lévy density s by non-parametric methods; that is,

we make only qualitative assumptions about s.

4. Examples of models satisfying the assumption:

(a) Standard continuous Lévy densities: ν(dx) = s(x) dx.

Estimate away from the origin (e.g. D = (a,∞) with a > 0):

(b) Tempered stable processes:

ν(dx) = |x|−α−1q(x)dx, with 0 < α < 2, and q continuous and

bounded.

Estimate s(x) = |x|6−α−1q(x) around the origin (e.g.

D = (−a, a)) with respect to η(dx) = x−6dx.
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5. Main ideas:

(a) Approximation by finite-dimensional linear models:

s(x) ≈ β1ϕ1(x) + · · ·+ βnϕn,

where the ϕ’s are known functions. The space

S := {β1ϕ1(x) + · · ·+ βnϕn : β1, . . . , βn reals}
is called an (approximating) linear model.

(b) Two problems to solve:

i. Estimate a good element of S . [Projection estimation]

ii. Determine a good approximating model from a collection of linear

models, which are dense in general classes of functions; e.g. Splines

and Wavelets. [Model selection]
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6. The general method of estimation:

(a) Simplifying assumption:
∫

ϕ2
i (x)η(dx) < ∞.

ϕ1, . . . , ϕn are assumed to be orthonormal on D wrt η:
∫

D

ϕi(x)ϕj(x)η(dx) = δi,j .

(b) Projection estimator on S :

ŝ(x) := β̂(ϕ1)ϕ1(x) + · · ·+ β̂(ϕn)ϕn(x),

where

β̂(ϕ) :=
1
T

∑

t≤T

ϕ(∆Xt).

7



(c) Basic Properties

i. Unbiasedness:

ŝ is an unbiased estimator of the orthogonal projection of s on S :

s⊥ = β(ϕ1)ϕ1(x) + · · ·+ β(ϕn)ϕn(x),

where

β(ϕ) :=
∫

s(x)ϕ(x)η(dx).

ii. The integrated-mean square error:

E‖s⊥ − ŝ‖2 =
1
T

∑

i

∫

D

ϕ2
i (x)s(x)dx

T→∞−→ 0,

where ‖f‖2 :=
∫

D
f2(x)η(dx).
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iii. The risk of estimation:

E
[‖s− ŝ‖2] = ‖s− s⊥‖2 + E‖s⊥ − ŝ‖2,

(d) Data-driven Model Selection:

i. Intuition:

In principle, a “nice” Lévy density s can be approximated closely

by general linear models such as splines or wavelet. However,

S ′ larger than S imply smaller approximating error ‖s− s⊥‖2
and larger variance E‖s⊥ − ŝ‖2.

ii. Objective: Accomplish a good trade off between the two terms.
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iii. A sensible solution:

E
[‖s− ŝ‖2] = ‖s‖2 + E

[−‖ŝ‖2 + pen (S)
]

where

pen (S) :=
2

T 2

∑

t≤T

ϕ̄2
S (∆Xt) , and ϕ̄2

S (x) :=
∑

i

ϕ2
i (x).

Key observation: −‖ŝ‖2 + pen (S) is Observable !!

iv. The penalized projection estimator, on a collection of linear models

M corresponding to a penalty function pen : M→ [0,∞), is the

projection estimator s̃ that attains the minimum of

min
S∈M

{−‖ŝS‖2 + pen(S)
}

,

where ŝS is the projection estimator on S .
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III. Implementation based on discrete observations

1. Problem:

Estimate

β̂ (ϕ) :=
1
T

∑

t≤T

ϕ(∆Xt),

based on n equally spaced observations on [0, T ]:
XT/n, X2T/n, . . . , XT .

2. A simple solution:

β̂n (ϕ) :=
1
T

n∑

k=1

ϕ
(
Xtk

−Xtk−1

)
,

where tk = T k
n , for k = 1, . . . , n.
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3. Elementary Properties:

Suppose that D := [a, b] ⊂ R\{0} and ϕ is a piece-wise continuous on

D. Then,

(a) β̂n(ϕ) D−→ β̂(ϕ), as n →∞

(b) limn→∞ E
[
β̂n(ϕ)

]
= β(ϕ) :=

∫
ϕ(x)s(x)η(dx)

(c) limn→∞Var
[
β̂n(ϕ)

]
= 1

T β
(
ϕ2

)
.

(d) If ŝ(n) is the approximate projection estimator of s on a given linear

model S , based on n discrete regular observations on [0, T ],

lim
n→∞

E
[
‖ŝ(n) − s‖2

]
= E

[‖ŝ− s‖2] .
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IV. A numerical example

• Gamma Lévy process with Lévy density p(x) = α
x e−x/β ,

• Histogram type estimators (i.e. the ϕ’s are indicator functions)

1. Model selection method based on a finite sample of jumps
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Sample Path Information:                   
Gamma Process with α = 1 and β = 1
(2000 jumps on [ 0 , 365 ])                 

Method of Estimation:            
Regular Histograms               

c=2                              
Estimation window = [0.02, 1.0] 

Best partition = 51 intervals 
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2. Model selection method based on equally spaced observations

∆t NPE-LSF MLE

1 1.01 1.46 .997 .995

.5 1.03 1.09 .972 .978

.1 .944 .995 1.179 .837

.01 .969 .924 6.92 .5

Table 1: Terminology: ∆t is the time span between sampling observations.

NPE-LSF= “Least-square errors fit of the model α
x e−x/β to the nonparametric

histogram estimator”.

Simulation: Results based on the simulations of 36500 jumps on [0, 365]
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V. Theoretical Qualities.

1. Risk bound:

(a) M - collection of linear models.

(b) DS := ‖∑
i ϕ2

i (·)‖∞, where {ϕi}i is an orthonormal basis for S .

(c) MT := {S ∈ M : DS ≤ T}.

The penalized projections estimator s̃T onMT satisfies

E
[‖s− s̃

T
‖2]

≤ C inf
m∈MT

{
‖s− s⊥Sm

‖2 + E[pen(m)]
}

+
C ′

T
,

for a constant C (independent ofM, s and T ), and C ′ (independentM
and T .).

15



2. Oracle Inequality: The risk of s̃
T

is comparable (up to a constant) to the

best possible risk using projection estimators:

E
[‖s− s̃

T
‖2] ≤ C inf

S∈MT

E
[‖s− ŝS‖2

]
+

C ′

T

3. Long-run rate of convergence: Let B be the Besov Space Bα
∞(L∞[a, b]),

for [a, b] ⊂ R\{0}. If s ∈ B and s̃T is penalized projection estimator on

the collection of piece-wise polynomials of degree at most bαc on regular

partitions of [a, b], then

lim sup
T→∞

T 2α/(2α+1) sup
s∈Θ

E
[‖s− s̃

T
‖2] < ∞,

where Θ :=
{
s ∈ B : ‖s‖∞ < R, and |s|Bα∞ < L

}
.
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4. Comparison to minimax risks:

Let [a, b] be a closed interval of R\{0}, then

lim inf
T→∞

T 2α/(2α+1)

{
inf
ŝ

T

sup
s∈Θ

E
[‖ŝT − s‖2]

}
> 0, (1)

where the infimum is over all estimators ŝT based on the jumps of the

Lévy process {X(t)}0≤t≤T with sizes falling on [a, b].
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Summary

We developed estimation and model selection schemes for the Lévy density of

a Lévy process:

• Flexible: it can be used histograms, splines, wavelets, etc.

• Model free

• Easily implementable

• Reliable and robust: Oracle inequality and adaptivity; i.e. asymptotically

comparable to minimax estimators on classes of smooth Lévy densities

• Applicable to estimate and assess specific parametric models via a

least-squares fit method
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VI. Some open problems

(1) Investigate asymptotics of non-parametric discrete-data based estimators

which are uniform on classes of Lévy densities, as well as their

comparisons to the long-run minimax risk. These asymptotics will be as

both the frequency of the observations and the time horizon increase.

(2) Extend the minimax and rate of convergence results when considering

arbitrarily small jumps and when estimating around the origin, where the

Lévy density usually blows up. How to assess the quality of estimation

around the origin? How to approximate functions that blows up?

(3) Apply similar ideas to more realistic models such as time-changed Lévy

processes and jump-diffusion models with stochastic volatility. For

instance, estimation of the functional parameters driving both the random

clock and the jump process.
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