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Outline of This Talk

• Brief review of first passage model for single-name default

• Stochastic volatility effects on first passage model for single-

name default

• Setup of first passage model under stochastic volatility for

two-name correlated defaults

• Derivation for the approximate joint default/survival probability

• Model calibration (ongoing work)
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First Passage Model for Single-Name Default

• Was first proposed by Black and Cox (1976), where the volatil-

ity for the underlying firm’s value is taken to be constant.

• The firm defaults at the first time that the firm’s value drops

to or below some exogenously prespecified level — the default

barrier/threshold.

• Closed-form formula exists for the default probability.

• The default probability and yield spread of the bond are close

to zero for short maturities, which is contrary to market obser-

vations.
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Stochastic Volatility Effects on Single-Name Default

• Proposed by Fouque, Sircar and Sφlna (2004).

• No closed-form formula exists for the default probability.

• For fast and slow mean-reverting stochastic volatilities, closed-

form formulas exist for the asymptotic default probability.

• Incorporating fast mean-reverting stochastic volatility can sig-

nificantly increase the default probability and yield spread for

short maturities.

• Incorporating slow mean-reverting stochastic volatility can in-

crease the default probability and yield spread for long maturities.
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Model Setup for Two-Name Correlated Defaults

Under physical measure P,
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where dW
(1)
t dW

(2)
t = 0, f1 and f2 are bounded above and below

away from 0. ε > 0 and δ > 0 are small parameters, corresponding
to fast and slow mean-reversion, respectively.

Default Barrier:

Bi(t) = Kie
ηit, i = 1,2.
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Dynamics under EMM

Under the equivalent martingale measure (EMM) P∗ chosen by

the market,
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where dW̃
(1)
t dW̃

(2)
t = 0, r is the constant interest rate, and Λ1

and Λ2 are combined market prices of risk. They are assumed

to be bounded and only dependent on volatility factors (Yt, Zt).
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Goal: Joint Survival Probability

uε,δ ≡ uε,δ(t, x1, x2, y, z)

≡ P∗
{

τ
(1)
t > T, τ

(2)
t > T

∣∣∣∣Xt = (x1, x2), Yt = y, Zt = z

}
where τ

(i)
t = inf

{
s ≥ t|X(i)

s ≤ Bi(s)
}

.

Obviously uε,δ(t, x1, x2, y, z) = 0 if x1 ≤ B1(t) or x2 ≤ B2(t).

Therefore we focus on the case where x1 > B1(t) and x2 > B2(t).
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PDE Representation

In terms of partial differential equations (PDE),

Lε,δuε,δ ≡
[

∂
∂t + L(X,Y,Z)

]
uε,δ = 0, x1 > B1(t), x2 > B2(t)

uε,δ(t, B1(t), x2, y, z) = 0, x2 > B2(t)

uε,δ(t, x1, B2(t), y, z) = 0, x1 > B1(t)

uε,δ(T, x1, x2, y, z) = 1, x1 > B1(t), x2 > B2(t)

where L(X,Y,Z) is the infinitesimal generator of (Xt, Yt, Zt) under

measure P∗.
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Operator Decomposition

Lε,δ =
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Expansion of uε,δ

uε,δ = u0 +
√

εu1,0 +
√

δu0,1 + · · ·

ũ ≡ u0 +
√

εu1,0 +
√

δu0,1 will be our approximation for the true

value uε,δ — First order approximation.
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Term u0

〈L2〉u0 = 0, x1 > B1(t), x2 > B2(t)

u0(t, B1(t), x2; z) = 0, x2 > B2(t)

u0(t, x1, B2(t); z) = 0, x1 > B1(t)

u0(T, x1, x2; z) = 1, x1 > B1(t), x2 > B2(t)

where 〈·〉 denotes the average (in y) with respect to N (mY , ν2
Y ).

Note that u0 depends on z in a parametric way.

Define

σ̄i(z) =
√
〈f2

i (·, z)〉, i = 1,2.

They are effective volatilities.
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Probabilistic Representation for u0

u0 = Ē

1{
inf

t≤s≤T
X̄

(1)
s /B1(s)>1, inf

t≤s≤T
X̄

(2)
s /B2(s)>1

}
∣∣∣∣∣∣∣∣ X̄t = (x1, x2)


where under measure P̄,
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(2)
t = 0. In other words,X̄(1)

t and X̄
(2)
t are inde-

pendent Geometric Brownian Motions.
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Final Solution of u0

u0 =

[
N
(
d
+(1)
2

)
−
(

x1

B1(t)
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N
(
d
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×
[
N
(
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+(2)
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−
(
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)p2

N
(
d
−(2)
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where N(·) is the standard normal cumulative distribution func-

tion, and

d
±(i)
2 =

± ln(xi/Bi(t)) + (r − ηi − σ̄2
i /2)(T − t)

σ̄i
√

T − t

pi = 1−
2(r − ηi)

σ̄2
i

.
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Term u1,0

〈L2〉u1,0 = Au0, x1 > B1(t), x2 > B2(t)

u1,0(t, B1(t), x2; z) = 0, x2 > B2(t)

u1,0(t, x1, B2(t); z) = 0, x1 > B1(t)

u1,0(T, x1, x2; z) = 0, x1 > B1(t), x2 > B2(t)

where A = 〈L1L−1
0 (L2 − 〈L2〉)〉. It can be shown that
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(
x2
2
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∂x2
2

)
where all V ’s are small of order

√
ε and only dependent on z.
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Transformation of u1,0

v1,0 =
√

εu1,0 + (T − t)
√

εAu0.

Then

〈L2〉v1,0 = 0, x1 > B1(t), x2 > B2(t)

v1,0(t, B1(t), x2; z) = g1(t, x2), x2 > B2(t)

v1,0(t, x1, B2(t); z) = g2(t, x1), x1 > B1(t)

v1,0(T, x1, x2; z) = 0, x1 > B1(t), x2 > B2(t)

where

g1(t, x2) = (T − t) lim
x1↓B1(t)

√
εAu0

g2(t, x1) = (T − t) lim
x2↓B2(t)

√
εAu0
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Change of Variables

Let {ξ(i)s }t≤s≤T be two independent Brownian Motions with drifts

µ̄i = (r − ηi − σ̄2
i /2)/σ̄i under measure P̄, and

ξ
(i)
t = ξi =

1

σ̄i
ln(xi/Bi(t)).

Denote

v1,0(t, x1, x2; z) = v̄1,0(t, ξ1, ξ2; z)

g1(t, x2) = ḡ1(t, ξ2)

g2(t, x1) = ḡ2(t, ξ1)
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Probabilistic Representation of v̄1,0

v̄1,0 = Ē
{
ḡ1(τ̄ , ξ

(2)
τ̄ )1(τ̄=τ̄1)

1(τ̄≤T )

+ḡ2(τ̄ , ξ
(1)
τ̄ )1(τ̄=τ̄2)

1(τ̄≤T )

∣∣∣∣ ξ(1)
t = ξ1, ξ

(2)
t = ξ2

}
for ξ1 > 0 and ξ2 > 0, where

τ̄i = inf
{

s ≥ t| ξ(i)s ≤ 0
}

, i = 1,2.

τ̄ = min{τ̄1, τ̄2}.
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Two Probability Densities

P̄
{

τ̄ ∈ ds, τ̄ = τ̄1, ξ
(2)
τ̄ ∈ dξ

∣∣∣∣ ξ(1)
t = ξ1, ξ

(2)
t = ξ2
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ξ1
π(s− t)2

exp

{
µ̄2ξ −

ξ2

2(s− t)

}
sinh

(
ξξ2

2(s− t)

)

exp

{
−

ξ21 + ξ22
2(s− t)

− µ̄1ξ1 − µ̄2ξ2 − (µ̄2
1 + µ̄2

2)(s− t)/2

}
dξds

P̄
{

τ̄ ∈ ds, τ̄ = τ̄2, ξ
(1)
τ̄ ∈ dξ

∣∣∣∣ ξ(1)
t = ξ1, ξ

(2)
t = ξ2

}
can be obtained

by symmetry.
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Term u0,1

〈L2〉u0,1 = −〈M1〉u0, x1 > B1(t), x2 > B2(t)

u0,1(t, B1(t), x2; z) = 0, x2 > B2(t)

u0,1(t, x1, B2(t); z) = 0, x1 > B1(t)

u0,1(T, x1, x2; z) = 0, x1 > B1(t), x2 > B2(t)

It can be shown that
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where all V ’s are small of order
√

δ and only dependent on z.
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Transformation of u0,1

Define operators M1 and M2 such that

√
δ〈M1〉u0 = M1

∂u0

∂σ1
+ M2

∂u0

∂σ2
.

Now define

v0,1 =
√

δu0,1 − (T − t)

(
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∂u0
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+
1
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∂x2
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2
∂2u0

∂x2
2

)
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PDE for v0,1

〈L2〉v0,1 = 0, x1 > B1(t), x2 > B2(t)

v0,1(t, B1(t), x2; z) = g3(t, x2), x2 > B2(t)

v0,1(t, x1, B2(t); z) = g4(t, x1), x1 > B1(t)

v0,1(T, x1, x2; z) = 0, x1 > B1(t), x2 > B2(t)

where
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(
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∂u0
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)

+
1
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x2↓B2(t)
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1
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∂x2
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2
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2

)
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Solution for v0,1

By doing the same type of change of variables as in the case of

v1,0, v1,0 can be represented as an expectation, which is essen-

tially a double integral.
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Model Calibration (ongoing work)

• Calibrate to individual default probability (or yield spread, CDS

data,etc.) to obtain estimates for those parameters entirely de-

termined by individual firms.

• Calibrate to default correlation (or implied correlation from

Gaussian copula) to obtain estimates for those parameters solely

connected to the dependency structure.
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The End

Thank You
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