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Deterministic stochastic optimal control

Developed in Rogers (2005) preprint.

Based on a dual result of American option pricing:

Y ∗
0 = supτ∈T E0[Zτ ]

= infM∈M0
E0

[

sup0≤t≤T (Zt − Mt)
]

,

where, M0 is the space of uniformly integrable
martingales started at zero (see Rogers, 2002).

Smallest supermartingale majorant to the payoff
function (see Myneni, 1992).

Results in an upper bound on the option price.
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The Optimization Problem

Let X be a Markov process taking values in X . The goal is to
control X over choice of controls a ∈ A, where A is the class of
adapted processes with values in some set U of admissable
controls.

The controlled transitions have density φ(x, y; a) w.r.t. some
reference Markovian transition P ∗.

The valuation function of the problem starting from state x at
time j is,

Vj(x) = supa∈AE





T−1
∑

r=j

fr(Xr, ar) + F (XT )|Xj = x
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Change of measure

Define

Λt(a) =

t−1
∏

r=0

φ(Xr,Xr+1; ar),

Recast the optimization problem as

V0(X0) = supa∈AE∗





T−1
∑

j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )
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Result for stochastic control problem

First main result (Theorem 1 of Rogers, 2005)
V0(X0) =

min(hj)E
∗

h

supa

n

PT−1
j=0 Λj(a)

n

fj(Xj , aj) − ηj+1 +E∗

j (ηj+1)
o

+ ΛT (a)F (XT )
oi

,

where,
ηj+1 = hj+1(Xj+1)φ(Xj ,Xj+1; aj)

Subtracted martingale difference ηj+1 − E∗
j (ηj+1).

Pathwise maximization over the controls.

Minimize over the choice of the martingale difference
sequence.

Note: Rogers (2005) also gives a multiplicative version of this
result – see Theorem 2 of his preprint.
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Another characterization

This is the value function in a result stated in Theorem 3:

Xj+1 = ξ(j,Xj , aj , εj+1), j = 0, . . . , T − 1.

Define,

Phj+1(x, a) = E [hj+1(ξ(j, x, a, εj+1))]

V0(X0) =

min(hj)E
h

supa

n

PT−1
j=0 (fj(Xj , aj) − hj+1(Xj+1) + Phj+1(Xj , aj)) + F (XT )

oi

Note: Rogers (2005) establishes a recursive version to
the above result in order to execute efficient numerical
computations.
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Sketch of Algorithm

Suppose that B = sup
a,x,x

′φ(x, x
′

; a) <∞.

Let {V (0)
j }T

j=0 be a sequence of function from X to X , with V (0)
T

= F .

Define recursively the functions {V
(n)
k

}T
k=0 for n = 1, 2, . . . by

V
(n+1)
k

(x) =

E∗

h

supa

n

PT−1
j=k

Λk,j(a)
n

fj(Xj , aj) − V
(n)
j+1(Xj+1)φ(Xj ,Xj+1; aj) + PV

(n)
j+1(Xj , aj)

o

+Λk,T (a)F (XT )
¯ ˛

˛Xk = x
˜

,

for x ∈ X and k = 0, . . . , T , where,

Λk,j(a) =
Qj−1

r=k
φ(Xr ,Xr+1; ar), and

Pψ(x, a) = E∗[φ(x,X1; a)ψ(X1)|X0 = x].

Let ∆
(n)
k

= supx|V
(n)
k

(x) − V
(n−1)
k

(x)|,

k = 0, 1, . . . , T , n ≥ 1, we get a bound

∆
(n)
k

≤ (1 +B)
PT

r=k+1 ∆
(n−1)
r .
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Main Steps of the Algorithm

Propose an approximation (hj) to the value.

Evaluate E[supa...]

Improve on the approximation of (hj)

Bellman recursions

Vn−1(x) = supaE
∗[f(x, a) + φ(x,X1; a)Vn(X1)|Xn−1 = x], (1 ≤ n ≤ t)

VT (x) = F (x)
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Issues

How to place the points of X ∈ RN at the start of the
dynamic programming algorithm.

Would hope to place points in regions where the
optimally-controlled process is most likely to go – but we do
not know where this will be.
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Rogers’ proposal

Set k = 0.

Set reference measure P (k) = (P ∗fork = 0).

Propose approximations h(k)
n to V (k)

n .

Simulate N paths and optimize pathwise – at each time n we obtain an
approximation V̂ (k+1)

n (X
(j)
n ) to to V (k+1)

n at each of the points X(1)
n , . . . ,X

(N)
n

visited by the simulated paths.

Regress approximate value onto basis – find some linear combination of basis
functions that matches V̂ (k+1)

n (X
(j)
n ) at the points X(j)

n .

Propose a P (k+1). Transitions from position x at time n will be determined by
selecting a point X(j)

n from {X1
n, ..X

N
n } at random, points closer to x being

selected with higher probability, and then jumping from the chosen point according
to the transition law for the action a, which was optimal for the j-th path.

Go to simulation step.
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An example from the preprint

Consider a controlled Markov process on the unit circle [0, 2π] whose dynamics are
given by

Xt+1 = Xt + εt+1 + at (1)

εt have density proportional to cos(x).

The control a lies in [0, 2π].

Objective:
PT

t=0 β
t[cos(Xt) + cos(at)]
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