Monte Carlo methods and stochastic control problems

November 9th, 2005

Ricky Rambharat

Deterministic stochastic optimal control

- Developed in Rogers (2005) preprint.
- Based on a dual result of American option pricing:

$$
\begin{aligned}
Y_{0}^{*} & =\sup _{\tau \in \mathcal{T}} E_{0}\left[Z_{\tau}\right] \\
& =\inf _{M \in \mathcal{M}_{0}} E_{0}\left[\sup _{0 \leq t \leq T}\left(Z_{t}-M_{t}\right)\right],
\end{aligned}
$$

where, \mathcal{M}_{0} is the space of uniformly integrable martingales started at zero (see Rogers, 2002).

- Smallest supermartingale majorant to the payoff function (see Myneni, 1992).
- Results in an upper bound on the option price.

The Optimization Problem

Let X be a Markov process taking values in \mathcal{X}. The goal is to control X over choice of controls $a \in \mathcal{A}$, where \mathcal{A} is the class of adapted processes with values in some set \mathcal{U} of admissable controls.

The controlled transitions have density $\phi(x, y ; a)$ w.r.t. some reference Markovian transition P^{*}.

The valuation function of the problem starting from state x at time j is,

$$
V_{j}(x)=\sup _{a \in \mathcal{A}} E\left[\sum_{r=j}^{T-1} f_{r}\left(X_{r}, a_{r}\right)+F\left(X_{T}\right) \mid X_{j}=x\right]
$$

Change of measure

Define

$$
\Lambda_{t}(a)=\prod_{r=0}^{t-1} \phi\left(X_{r}, X_{r+1} ; a_{r}\right)
$$

Recast the optimization problem as

$$
V_{0}\left(X_{0}\right)=\sup _{a \in \mathcal{A}} E^{*}\left[\sum_{j=0}^{T-1} \Lambda_{j}(a) f_{j}\left(X_{j}, a_{j}\right)+\Lambda_{T}(a) F\left(X_{T}\right)\right]
$$

Result for stochastic control problem

First main result (Theorem 1 of Rogers, 2005)
$V_{0}\left(X_{0}\right)=$
$\min _{\left(h_{j}\right)} E^{*}\left[\sup _{a}\left\{\sum_{j=0}^{T-1} \Lambda_{j}(a)\left\{f_{j}\left(X_{j}, a_{j}\right)-\eta_{j+1}+E_{j}^{*}\left(\eta_{j+1}\right)\right\}+\Lambda_{T}(a) F\left(X_{T}\right)\right\}\right]$, where,
$\eta_{j+1}=h_{j+1}\left(X_{j+1}\right) \phi\left(X_{j}, X_{j+1} ; a_{j}\right)$
■ Subtracted martingale difference $\eta_{j+1}-E_{j}^{*}\left(\eta_{j+1}\right)$.

- Pathwise maximization over the controls.

■ Minimize over the choice of the martingale difference sequence.

Note: Rogers (2005) also gives a multiplicative version of this result - see Theorem 2 of his preprịnt.

Another characterization

This is the value function in a result stated in Theorem 3:
$X_{j+1}=\xi\left(j, X_{j}, a_{j}, \epsilon_{j+1}\right), j=0, \ldots, T-1$.
Define,
$P h_{j+1}(x, a)=E\left[h_{j+1}\left(\xi\left(j, x, a, \epsilon_{j+1}\right)\right)\right]$
$V_{0}\left(X_{0}\right)=$
$\min _{\left(h_{j}\right)} E\left[\sup _{a}\left\{\sum_{j=0}^{T-1}\left(f_{j}\left(X_{j}, a_{j}\right)-h_{j+1}\left(X_{j+1}\right)+P h_{j+1}\left(X_{j}, a_{j}\right)\right)+F\left(X_{T}\right)\right\}\right]$
Note: Rogers (2005) establishes a recursive version to the above result in order to execute efficient numerical computations.

Sketch of Algorithm

Suppose that $B=\sup _{a, x, x^{\prime}} \phi\left(x, x^{\prime} ; a\right)<\infty$.
Let $\left\{V_{j}^{(0)}\right\}_{j=0}^{T}$ be a sequence of function from \mathcal{X} to \mathcal{X}, with $V_{T}^{(0)}=F$.
Define recursively the functions $\left\{V_{k}^{(n)}\right\}_{k=0}^{T}$ for $n=1,2, \ldots$ by
$V_{k}^{(n+1)}(x)=$
$E^{*}\left[\sup _{a}\left\{\sum_{j=k}^{T-1} \Lambda_{k, j}(a)\left\{f_{j}\left(X_{j}, a_{j}\right)-V_{j+1}^{(n)}\left(X_{j+1}\right) \phi\left(X_{j}, X_{j+1} ; a_{j}\right)+P V_{j+1}^{(n)}\left(X_{j}, a_{j}\right)\right\}\right.\right.$
$\left.\left.+\Lambda_{k, T}(a) F\left(X_{T}\right)\right\} \mid X_{k}=x\right]$,
for $x \in \mathcal{X}$ and $k=0, \ldots, T$, where,
$\Lambda_{k, j}(a)=\prod_{r=k}^{j-1} \phi\left(X_{r}, X_{r+1} ; a_{r}\right)$, and
$P \psi(x, a)=E^{*}\left[\phi\left(x, X_{1} ; a\right) \psi\left(X_{1}\right) \mid X_{0}=x\right]$.
Let $\Delta_{k}^{(n)}=\sup _{x}\left|V_{k}^{(n)}(x)-V_{k}^{(n-1)}(x)\right|$,
$k=0,1, \ldots, T, n \geq 1$, we get a bound
$\Delta_{k}^{(n)} \leq(1+B) \sum_{r=k+1}^{T} \Delta_{r}^{(n-1)}$.

Main Steps of the Algorithm

- Propose an approximation $\left(h_{j}\right)$ to the value.

■ Evaluate $E\left[\sup _{a} \ldots.\right]$

- Improve on the approximation of $\left(h_{j}\right)$

Bellman recursions

$$
\begin{aligned}
V_{n-1}(x) & =\sup _{a} E^{*}\left[f(x, a)+\phi\left(x, X_{1} ; a\right) V_{n}\left(X_{1}\right) \mid X_{n-1}=x\right],(1 \leq n \leq t) \\
V_{T}(x) & =F(x)
\end{aligned}
$$

Issues

■ How to place the points of $\mathcal{X} \in R^{N}$ at the start of the dynamic programming algorithm.

- Would hope to place points in regions where the optimally-controlled process is most likely to go - but we do not know where this will be.

Rogers' proposal

\square Set $k=0$.
Set reference measure $P^{(k)}=\left(P^{*}\right.$ fork $\left.=0\right)$.
■ Propose approximations $h_{n}^{(k)}$ to $V_{n}^{(k)}$.

- Simulate N paths and optimize pathwise - at each time n we obtain an approximation $\hat{V}_{n}^{(k+1)}\left(X_{n}^{(j)}\right)$ to to $V_{n}^{(k+1)}$ at each of the points $X_{n}^{(1)}, \ldots, X_{n}^{(N)}$ visited by the simulated paths.
- Regress approximate value onto basis - find some linear combination of basis functions that matches $\hat{V}_{n}^{(k+1)}\left(X_{n}^{(j)}\right)$ at the points $X_{n}^{(j)}$.
\square Propose a $P^{(k+1)}$. Transitions from position x at time n will be determined by selecting a point $X_{n}^{(j)}$ from $\left\{X_{n}^{1}, . . X_{n}^{N}\right\}$ at random, points closer to x being selected with higher probability, and then jumping from the chosen point according to the transition law for the action a, which was optimal for the j-th path.
- Go to simulation step.

An example from the preprint

Consider a controlled Markov process on the unit circle $[0,2 \pi]$ whose dynamics are given by

$$
\begin{equation*}
X_{t+1}=X_{t}+\epsilon_{t+1}+a_{t} \tag{1}
\end{equation*}
$$

- ϵ_{t} have density proportional to $\cos (\mathrm{x})$.
- The control a lies in $[0,2 \pi]$.

■ Objective: $\sum_{t=0}^{T} \beta^{t}\left[\cos \left(X_{t}\right)+\cos \left(a_{t}\right)\right]$

