
1 Epstein-Zin-GARCH Asset Pricing Problem

Let Ct denote the monthly consumption endowment, let ct = logCt, and let ∆ct = ct − ct−1.

Similarly, let Dt denote the monthly dividend on a stock, let dt = logDt, and let ∆dt =

dt − dt−1. The driving processes are the consumption growth and dividend growth processes

{∆ct} and {∆dt}; collect them in the column vector yt = (∆ct,∆dt)
′. The location function

of the driving processes is a VAR(1):

µt−1 = b0 +Byt−1.

The scale function is a BEKK(1,1):

Σt−1 = R0R
′
0 +QΣt−2Q

′ + P (yt−1 − µt−2)(yt−1 − µt−2)
′P ′.

Above, R0 is an upper triangular matrix. The scale function is factored as Σt−1 = Rt−1R
′
t−1

where Rt−1 is upper triangular. The driving process is, then,

yt = µt−1 +Rt−1et.

We shall take the errors to be independent multivariate normal N2(0, I). Evidently, the state

vector is

St = (yt, yt−1,Σt−1).

The parameter values are

b0 =







0.0019012

0.0012394







B =







0.030469 −0.0048240

0.30314 0.061984







R0 =







0.0010742 0.00075859

0 0.0012917







P =







0.5 0

0 0.5







Q =







0.8 0

0 0.8





 .
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The Epstein-Zin-Weil utility function is

Ut =
[

(1− δ)C
1−γ
θ

t + δ(EtU
1−γ
t+1 )

1

θ

] θ
1−γ

where γ is the coefficient of risk aversion,

θ =
1− γ

1− 1/ψ
,

and ψ is the elasticity of intertemporal substitution. The values of these parameters are

δ = 0.999566

θ = −12.2843

ψ = 2.0.

Let Pct denote the price of an asset that pays the consumption endowment and let

Vc(St) =
Pct

Ct

denote the corresponding price dividend ratio. The pricing function Vc(St) is the solution to

the nonlinear conditional integral equation

Vc(St) = Et
{

δθ exp[−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1] [1 + Vc(St+1)] exp(∆ct+1)
}

(1)

where

rc,t+1 = log

[

1 + Vc(St+1)

Vc(St)
exp(∆ct+1)

]

(2)

is the geometric return on the asset and Et(·) = E(·|St). Evidently, the marginal rate of

substitution is

Mt,t+1 = δθ exp[−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1].

The price dividend ratio Vd(St) = Pdt/Dt on the asset that pays Dt is the solution to

Vd(St) = Et
{

δθ exp [−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1] [1 + Vd(St+1)] exp(∆dt+1)]
}

. (3)

The price of the asset that pays $1 with certainty is the solution to

Vf (St) = Et
{

δθ exp [−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1]
}

. (4)
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Once the pricing functions Vc(St), Vd(St), and Vf (St) have been determined, the geometric

stock return and the geometric risk free rate can be determined from

rdt = log

[

1 + Vd(St)

Vd(St−1)
exp(∆dt)

]

rft = − log[Vf (St)].

The problem is to compute the pricing functions Vc(St), Vd(St), and Vf (St) by solving the

conditional integral equations (1) together with (2), (3), and (4).

The solutions are to be placed in the inner loop of an MCMC computation and must

therefore be fast. They must also accurately track any curvature in the pricing functions

because the objective of the overall exercise is to determine how complicated the driving

process must be to accurately mimic the conditional moments of observed data. If the

putative solution is nearly linear when the correct solution is not, then results will be biased

toward finding complicated driving processes.

The approach used to date has been the following. Substitute (2) into (1) and denote

the resulting conditional integral equation by

Et{g[∆ct+1, Vc(St+1), Vc(St)]} = 0

Choose some basis functions such as the Hermite functions to the second order, arrange them

in the column vector b(S), approximate as Vc(S)
.
= a′b(S), and substitute to obtain

Et{g[∆ct+1, a
′b(St+1), a

′b(St)]} = 0 (5)

The conditional integral equation (5) implies the system of unconditional integral equations

E{b(St)g[∆ct+1, a
′b(St+1), a

′b(St)]} = 0

which can be approximated using a long simulation of the driving process as

1

N

N
∑

t=1

b(St)g[∆ct+1, a
′b(St+1), a

′b(St)] = 0 (6)

Typically N is on the order of 50,000. If the vector of basis functions has dimension d then

(6) is a system of d nonlinear equations in the d unknowns a = (a0, a1, . . . , ad). One can use

a nonlinear equation solver to compute these coefficients. One can solve equations (3) and
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(4) analogously. These two conditional integral equations are much simpler to solve because

(2) is known once (1) together with (2) has been solved.

This approach has been sufficiently fast and accurate when the driving process has no

GARCH terms (i.e. P = Q = 0). But GARCH terms expand the support of the distribution

of the driving processes and this method has been unable to obtain accurate, stable solutions

over the expanded support.

A reference is Bansal, Ravi, A. Ronald Gallant, and George Tauchen (2004) “Ratio-

nal Pessimism, Rational Exuberance, and Markets for Macro Risks,” Manuscript, Fuqua

School of Business, Duke University, ftp://ftp.econ.duke.edu/pub/arg/papers/ms.pdf. This

problem and solution method is described in more detail therein.
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2 Log-Linear Stochastic Volatility Problem

Price a European option on the process labeled LL2VF in Chernov, Mikhail, A. Ronald

Gallant, Eric Ghysels, and George Tauchen (2003), “Alternative Models for Stock Price

Dynamics,” Journal of Econometrics 116, 225–257, at the parameter settings given in Table 4

of that reference, which is repeated as Table 2 here.

Briefly, the LL2VF model is
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with parameter values for it and various simplifications given in Table 2 below. In Table 2

and in the article itself, the following conventions are observed:

• Reporting Conventions:

Results are stated in annual time for the returns process

dPt

Pt

= µtdt+ σtdWt

• Simulation Conventions:

What is actually simulated is the log price process Ut = log(Pt), where

dUt =
(

µt −
1

2
σ2t

)

dt+ σtdWt,
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Table 2. Parameter Estimates and Standard Errors for Logarithmic Models

LL1V LL1VF LL2V LL2VI LL2VF

Est SE Est SE Est SE Est SE Est SE

α10 0.0831 0.0200 0.0841 0.0195 0.0780 0.0337 0.0589 0.0225 0.0674 0.0279

α12 0.6787 0.0513 0.8870 0.1397 0.9833 0.4820 1.1670 0.7872 2.1927 0.7281

α22 -0.6087 0.8540 -1.0531 0.3425 -1.1219 1.0043 -1.1701 2.5137 -7.0195 5.9997

α33 -6.3778 0.9315 -4.3016 0.3601 -0.0041 0.0291 -0.0512 0.0410 -0.1203 0.1227

α44 -74.7610 10.7994 -52.6673 3.1107 -51.3082 8.2119

β10 -2.2882 0.0320 -2.2585 0.0253 -2.0659 1.0294 -2.1969 0.0414 -2.2143 0.0486

β13 1.3708 0.1059 1.2051 0.0410 0.0367 0.0261 0.0863 0.0400 0.1348 0.0695

β14 3.5477 0.5162 2.7688 0.2597 2.7442 0.3130

β33 0.5342 0.1168 0.0408 0.3672

β44 1.9228 0.2260 2.2169 0.3655

ψ13 -0.6482 0.0216 -0.6365 0.0107 -0.3382 0.3285 -0.2966 0.0240 -0.3403 0.1077

ψ14 -0.3538 0.0793 -0.2915 0.0408 -0.2804 0.0564
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Simulation is in annual time using an Euler scheme with 24 steps per day assuming

252 trading dates per year; i.e. ∆t = 1/6048.

• Simulated Daily Returns Process:

ys = 100(Ut − Ut−24∆t)

where t = s(24∆t), s = 1, 2, . . . , N .

7


