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going back to Merton (1971).

• Portfolio problem when asset returns are generated by processes other

than Brownian motion, such as stable processes or more general Lévy

processes: see Han and Rachev (2000), Kallsen (2000), Choulli and

Hurd (2001), Emmer and Kluppelberg (2004), Madan (2004).
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1.2. Our Solution Method

• With jumps, the portfolio choice problem does not have a closed-form

solution.

• So the existing papers have usually solved numerically the problem

with a single risky asset (e.g., Liu, Longstaff and Pan (2003), Das and

Uppal (2004)).
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• The model

• Explicit solutions

– A one sector economy

– An economy with m sectors consisting of k firms each

– A misspecified problem where jumps are mistakenly lumped to-

gether with Brownian volatility.

• Example: worldwide asset allocation
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• Let π0,t denote the amount invested in the riskless asset and πt =[
π1,t, . . . , πn,t

]′
denote the vector of amounts invested in each of the

n risky assets.

• In the absence of any other source of income, the investor’s wealth,
starting with the initial endowment X0, is Xt =

∑n
i=0 πi,t.

• The investor’s wealth dynamics are given by

dXt = π0,t
dS0,t

S0,t−
+

n∑
i=1

πi,t
dSi,t

Si,t−

=
(
Xt − π′t1

)
rdt +

n∑
i=1

πi,t
dSi,t

Si,t−
.
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• The discounted wealth dynamics are given by

dYt = ω′tRdt + ω′tσdWt + ω′tJZtdNt.
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• The investor’s problem at time t is to pick the portfolio vector process

{ωs}t≤s≤T which maximizes the expected utility of terminal wealth,

V (Yt, t) , subject to the dynamics of his discounted wealth.

• Using stochastic dynamic programming and the appropriate form of

Itô’s lemma for semi-martingale processes, the Hamilton-Jacobi-Bellman

equation characterizing the optimal solution to the investor’s problem

is:

0 =
∂V (Yt, t)

∂t
+ max
{ωt}

{
∂V (Yt, t)

∂Y
ω′tR +

1

2

∂2V (Yt, t)

∂Y 2
ω′tΣωt

+ λ
∫ [

V
(
Yt + ω′tJz, t

)
− V (Yt, t)

]
ν (dz)

}
.

where Σ = σσ′.
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with CARA coefficient γ > 0.

• We can look for a solution in the form

V (y, t) = −eK(T−t)e−γy

where K is constant. In which case, the HJB equation becomes

0 = −K + min
{ωt}

{g(ωt)} .
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e−γω′Jz − 1

]
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is time independent, strictly convex, goes to +∞ in all directions,

and hence always has a unique time independent minimizer which is

proportional to γ−1:

ω∗ = arg min
{ωt}
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g(ω) = −γω′R +
1

2
γ2ω′Σω + λ

∫ ∞
0

[
e−γω′Jz − 1

]
v (dz) ,

is time independent, strictly convex, goes to +∞ in all directions,

and hence always has a unique time independent minimizer which is

proportional to γ−1:

ω∗ = arg min
{ωt}

g(ωt).

• The issue is that with n assets, this is an n−dimensional equation to

be minimized.



• In the pure diffusive case, λ = 0 and we obtain of course the familiar

solution

ω∗ =
1

γ
Σ−1R.

• So far, this is pretty much standard material.
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3.1. Homogeneous Assets

• To begin, we consider the simplest possible case, where the n risky
assets have the same jump size and expected excess return character-
istics

J = J̄1 and R = R̄1

with J̄ and R̄ scalars.

• To fix ideas, let us assume that J̄ < 0 in order to capture the downward
risk inherent in the types of jumps we are concerned about.
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where v2 > 0 is the variance of the returns generated by the diffusive

risk, and 0 < ρ < 1 their common correlation coefficient.

• The key to characterizing the optimal portfolio solution in this simple

situation is to decompose both Σ and ω on a well chosen basis, con-

sisting in this case of the n−vector 1 and its orthogonal hyperplane.
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• Specifically, the spectral decomposition of the Σ matrix is:

Σ = κ1
1

n
11′︸ ︷︷ ︸

Σ̄

+ κ2

(
I−

1

n
11′

)
︸ ︷︷ ︸

Σ⊥

where I denotes the n× n identity matrix.

• The two distinct eigenvalues of Σ are

κ1 = v2 + v2 (n− 1) ρ

κ2 = v2 (1− ρ)

• κ1 has multiplicity 1 and eigenvector 1 and κ2 has multiplicity n− 1.
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• Then, from above, the optimal ω̄∗ and ω⊥∗ must satisfy(
ω⊥∗, ω̄∗

)
= arg min

{ω⊥,ω̄}
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}
where

g⊥(ω⊥) =
1

2
γ2ω⊥′κ2

(
I−

1

n
11′

)
ω⊥
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• The optimal solution for ω⊥ in this case is obviously ω⊥∗ = 0.
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• With the change of variable $n = nω̄, we see that

$∗
n = arg min

{$}

{
−γ$R̄ +

1

2
γ$2κ1/n + λ

∫ ∞
0

[
e−γ$J̄z − 1

]
v (dz)

}
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• Letting n →∞, we have that κ1/n → v2ρ and so $∗
n → $∗

∞ where

$∗
∞ = arg min

{$}

{
−γ$R̄ +

1

2
γ2$2v2ρ + λ

∫ ∞
0

[
e−γ$J̄z − 1

]
v (dz)

}
.




