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Agenda �

Agenda

? Main motivation of this study and somereferences.

? Static Framew ork :

� Basic recalls and new developments on monetary risk measures.

� Cash invariance and discounting : cashand forward risk measures

? Cash sub-linear risk measures :

� De�nition and dual representation

� Extensions into cash-invariante risk measureon defaultable risks.

? Optimal Deriv ativ es design with time to default uncertain t y

� Inf-convolution,and optimal structure.

? Dynamic framew ork via BSDE's : Prop erties of the coe�cien t

� Inf-convolution of the coe�cien ts and optimal structure.
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Intro duction and Motiv ation �

In tro duction and Motiv ation

Risk managemen t

� New developments, new regulatory rules.

� Credit risk regulation : Bale I I

Question : How to take into account ambiguit y on interest rates, or time to

default ?. Classicalmonetary risk measures are not adapted tools to do

that.

Design of new �nancial pro ducts in this context

� How the design�nancial contracts to hedgenon-�nancial risk :

"cat-b onds", weather derivatives...

� Il liquid instruments, with an underlying assetwhich is not traded on

�nancial markets.

� Credit derivatives
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Intro duction and Motiv ation �

Con vergence and in terpla y between �nance and insurance :

) Use of the knowledgeof �nancial risk management to the management of

other kinds of risk.

) Use of the insurancetechnology to designstructured products.

Ho w to separate the speci�c risk of the discoun t (defautable) risk
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Intro duction and Motiv ation �

Some related works (among man y others... ! !)

? Insurance liter ature on optimal policy design : Borch (1962), B•uhlmann (1970),

Raviv (1979), Gerber (1980)...

? Indi�er ence pricing (often in an exponential framework) :

Hodges-Neuberger(1989), Davis(1997), Rouge-El Karoui(2000), Becherer (2001),

Delbaen et al (2002), Musiela-Zariphop oulou (2004)....

? Risk measures

) (seminal papers) : Deprez-Gerber(1985), Artzner et al.(1999), Delbaen(2000),

Carr-G �eman-Madan(2001), F•ollmer-Schied(2002), Frittelli-Gianin(2002)...

) (multi-p eriod setting) : Scandolo (2003), Artzner et al.(2004), Cheridito et

al.(2004), Riedel (2004), Weber(2005), Detlefsen-Scandolo(2005), Frittelli-Scandolo

(2005), Kl •oppel-Schweizer (2005)...

? BSDEs and �nanc e : El Karoui-Quenez(1996), El Karoui-P eng-Quenez(1997),

Peng(1997,2003), Mania-Schweizer(2004)...
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Convex Risk measures: Basic properties �

Convex Risk measures : Basic prop erties

De�nition : Let (
 ; F ) be a standard measurablespaceand X the linear

spaceof bounded functions (including constant functions).

The functional � is a monetary risk measure if it satis�es :

� Convexity, and Decreasing monotonicity ;

� Translation invariance : 8X 2 X ; 8m 2 R; � (X + m) = � (X ) � m.

In particular, � (X + � (X )) = 0.

Commen ts

) � (X ) can be also interpreted as the minimal capital requirement to be

added to the position X to make it "acceptable" : the new position

X + � (X ) doesnot carry any risk with positive measure.

) � � (X ) can be seenas the maximum amount the agent is ready to pay to

hold the risk X in her portfolio.

) � � (X ) can be seenas the indi�er ence buyer's price.
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Convex Risk measures: Basic properties �

Dual represen tation

The convexity of the framework leadsto an "explicit" representation

Theorem : There exists a penalty function � taking valuesin R [ f + 1g such

that :

8	 2 X ; � (	) = supQ 2M 1;f
f EQ [� 	] � � (Q)g

8Q 2 M 1;f ; � (Q) = sup	 2X f EQ [� 	] � � (	) g

where M 1;f is the set of all additive measures on (
 ; F ).

Moreover, the supremum is attained in the �rst equation in M 1;f Example :

The entropic risk measureis de�ned as e (	) =  ln EP

h
exp

�
� 1

 	
�i

;

where  is the risk tolerance coe�cient .

Its dual representation is :

e (	) = supQ2M 1
(EQ[� 	] �  h(QjP))

where M 1 is the set of all probabilit y measureson (
 ; F ) and h(QjP) is the

relative entropy of Q w.r. to P.
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Risk measuresand hedging �

Risk measures and hedging

Acceptance set : The acceptance set associated with � is de�ned as :

A � = f 	 2 X ; � (	) � 0g. A � charaterizes � = inf f m 2 R; m + X 2 A � g

Sup er-hedging as risk measures

? Let H be a convex subsetof X consisting of potential hedges.Then

A H = f 	 2 X ; 9� 2 H ; 	 � � g is the set of all super-hedged positions.

) A H de�nes a convex risk measure� H :

� H (	) = inf f m 2 R; such that 9� 2 H ; m + 	 � � g

= inf � 2H sup! (� 	 + � )( ! ) = inf � 2H � max (	 � � ):

� H (� 	) is the superhedging price of � 	.

The associated penalty function is � H (Q) = sup	 2H EQ [� 	] :
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Cash-Invariance and Discounting �

Cash-In variance and Discoun ting

The de�nition of monetary risk measureimplicitly assumesthat future risk

position and risk measureare expressedin the same num ~A c raire .

Con vention :10 = 1 unit of cash,and 1T = 1 unit of cashavailable at time T.

D0;T is the random discount factor.

Spot risk measure (Foellmer-Schied,2004)et Cash-invariance

� 0 (D 0;T X T + m1 0) = � 0(D0;T X T ) + � 0(m10); � 0(m10)� = m10

Forw ard risk measure (Rouge-El Karoui(2000))

� T (X T ) = � T (X T + m1T ) = � T (X T ) + m� T (1T ) and � T (1T ) = � 1
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Cash-Invariance and Discounting �

Spot risk measure and Forw ard risk measure

Supposea zero-coup on B (0; T) in the market.

Then � � T
0

�
D 0;T X T

�
:= B 0;T � T (X T ) is a cash invariante risk measurei�

) � T (D � 1
0;T ) = � B (0; T ).

) Then, for any QT in the domain of � T ,

EQT (D0;T ) = B (0; T)

) Q0 belongsto dom(� 0) i�

dQT = D0;T =B(0; T)dQ0

belongsto dom(� T )
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Cash sub-additiv e Risk measure �

Cash sub-additiv e Risk measure

Observe that, if R(X T ) = � (X T D0;T ), then

8m � 0; 8X T 2 XT ; R(X T + m1T ) = � (X T D0;T + mD 0;T )

� � (X T D0;T + m10) = � (X T D0;T ) � m10 = R(X T ) � m10:

In other words, for any X T 2 XT the function m 2 R 7! R(X T + m1T ) + m10

is nondecreasing.R is said to be cash sub-additiv e.

Def : Any convex, decreasing, cash sub-additive functional de�ned onXT is

called Cash sub-additiveRisk measure.

Monetary risk measure extension

The key property is that R̂ (X T ; x) := R(X T � x 1T ) � x10 is cash in varian te

as a functional of (X T ; x), since

R̂ (X T + m; x + m) = R((X T + m � (x + m)1T ) � (x + m)10 = R̂ (X T ; x) � m10
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Cash sub-additiv e Risk measure �

Enlarged space and �ltration

(X T ; x) may ve viewed as the \co ordinates" of somer.v. X̂ T on the extended

spaceb
 = 
 � f 1; 0g such that

X̂ T (! ; � ) = X T (! )1f � =1 g + x1f � =0 g

The correspondenceis one to one.

Extended Risk measure

Let R be a cashsub-additive risk measurede�ned on XT . R generatesa

cash-monetaryconvex risk-measureb� on the space cXT of the bounded bFT -r.v.

b�
�
X T 1f � =1 g + x1f � =0 g

�
= bR

�
X T ; x

�
:= R

�
X T � x 1T

�
� x 10;

b� (X T (! )1f � =1 g) can be identi�ed with R(X T ).

bR(X T ; x) = R(X T � x) � x � R(X T � y) � y � bR(YT ; y) � y = bR(YT ; y):

In terms of \economic default time" , f � = 1g may be viewed as f T < � g
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Dual representation of R �

Dual represen tation of R

Any probabilit y measureQ̂ on 
̂ can be decomposedinto

Q̂(X T 1f � =1 g + x1f � =1 g = Q̂(f � = 1g)Q̂(X T jf � = 1g) + x(1 � Q̂(f � = 1g))

= q̂ Q1(X T ) + x (1 � q̂)

Characterization The minimal penalty function �̂ (Q̂) = � (� ) dependsonly

on � = q̂ Q1, and
8
>>><

>>>:

�̂ (Q̂) = supX T 2X T ;x 2 R

n
EQ̂[� (X T � x)1� =1 ] � R(X T � x)

o

= supYT 2X T

�
q̂ Q1(� YT ) � R(YT )

	

R(X T ) = sup� 2M s
1

f � (� X T ) � � (� )g

Remark The risk measureR̂ is not de�ned on the spaceXT

SAMSI-F ebruary 2006 13



More natural extension �

More natural extension

The aim of this extension is to de�ne a risk measure~� on a space~XT of

bounded r.v. containing XT . We need

) to de�ne the r.v. ~X T = X 1
T 1� =1 + X 0

T 1� =0

) to intro duce a arbitrary (normalized) monetary risk measure� on order

to specify a \a priori" risk measurefor X 0
T .

Tw o monetary risk measures The functional ~� de�ned by

~� (X 1
T 1� =1 + X 0

T 1� =0 ) = R
�
X 1

T + � (X 0
T )

�
+ � (X 0

T )

is a monetary risk measure,with minimal penalty function, for any
~Q = ~q1 ~Q1 + ~q0 ~Q0

~�
� ~Q

�
= � R

�
~q1 ~Q1�

+ ~q0�
� ~Q0�
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More natural extension �

� The functional � R (X T ) = ~� (X T ; X T ) is a monetary risk measurewith

penalty functional

� � R (Q) = inf
( ~q1 ; ~Q1 ; ~q0 ; ~Q0 jQ= ~q1 ~Q1 + ~q0 ~Q0 ))

� R (~q1 ~Q1) + ~q0� ( ~Q1)

� � R doesnot allow us to recover R.

� Let us denoted by D0;T the conditional expectation of 1� =1 given FT . Then,
~Q(X T 1� =1 ) = Q(X T D0;T ), and

~Q(X T 1� =0 ) = Q(X T (1 � D0;T )) ; , dQ0 =
(1 � D0;T )

~q0 dQ

R(X t ) = sup(Q;D 0;T )2A f Q(� X T D0;T ) � (� R
�
D0;T :Q

�
+ ~q0�

�
Q0

�
g
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Optimal Derivativ e Design �

Optimal Deriv ativ e Design

Agent A Agent B

ExposureX A
T FT ExposureX B

T

 � � � � � � � � � � �� 0

) We want to determine the optimal transaction (F; � ).

Transaction feasibilit y

? Agent A looks for a hedgeof her exposure: inf F 2X ;� 0 R A (X A
T � FT ) � � 0 :

? Agent B wants to improve her risk measure: R B (X B
T + FT ) + � 0 � � B (X B

T ):

) Optimal pricing rule : (� �
B )0(FT ) = R B

�
X B

T

�
� R B

�
X B

T + F
�
:
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Inf-convolution �

Inf-con volution

Theorem : Let R A and R B be two cashsublinear risk measureswith

respective penalty functions � A and � B . Let R A;B be the inf-convolution of

R A and R B

	 ! R A;B (	) � R A � R B (	) = inf
H 2X

�
R A (	 � H ) + R B (H )

	

and assumethat R A;B (0) > �1 .

� Then � A;B is a cash sub-linear convex risk measure which is �nite for all

	 2 X .

� The associated penalty function is given by

8� ; � 2M s
1;f � A;B (� ; � ) = � A (� ; � ) + � B (� ; � ):

� R A;B is continuous from below as soon as this property holds for R A or R B
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�

Dynamic Framew ork

Goal

� To obtain an explicit characterization of the optimal transfer.

� By reducing this in�nite dimensional problem into a �nite one.

� The useof dynamic programing techniques(BSDEs), may help to study risk

measuresde�ned by their local speci�cations.
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Dynamic entropic risk measure: �

Dynamic entropic risk measure :

It is de�ned as :

e ;t (X ) =  ln EP

�
exp

�
� 1

 X
�

== t

�

is a typical dynamic convex risk measure.

Relationships with BSDEs :

Moreover, it is possibleto relate it to BSDE since(e ;t (X ) ; t 2 [0; T]) is

solution of the BSDE with the quadratic coe�cien t g (t; z) = 1
2 kzk2 :

� de ;t (X ) = 1
2 kzt k

2 dt � hzt ; dWt i with the terminal condition e ;T (X ) = � X

) The idea is then to relate dynamic convex risk measureswith BSDEs.
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Dynamic convex risk measuresand BSDEs �

Dynamic convex risk measures and BSDEs

Basic recall on BSDEs

The BSDE (g; � T ) :

� dYt = g(t; Yt ; Zt )dt � < Zt ; dWt > ; YT = � T

has a (maximal, unique?) solution (Yt ; Zt ) under someconditions imposedon

the coe�cien t g :

� Uniformly Lipschitz (H1) (and � T 2 L 2),

� Continuous with linear growth (H2) (and � T 2 L 2),

� Continuous with quadratic growth (H3) (and � T 2 L 1 ). Mark ovian

Framew ork :(X t ) with generator L . Then, formally, Yt = u(t; X t ),

Zt = u0
x (t; X t )� (t; X t ) and and HJBequation

u0
t (t; x) + Lu (t; x) + g(t; u(t; x); u0

x (t; x)� (t; x)) = 0
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Dynamic convex risk measures �

Dynamic convex risk measures
? Let g be a standard coe�cien t. The g-dynamic operator, denoted by Yg, is

such that Yg
t (� T ) is the maximal solution of the BSDE (g; � T ) :

� dYt = g(t; Yt ; Zt )dt � < Zt ; dWt > ; YT = � T

Theorem : Let Yg be the g-dynamic operator.

? Yg is increasing monotonic, time-consistent (+) and arbitrage-free.

? Yg is translation invariant (+) (cash-sublinear)if and only if g does not

depend on y (g is non increasing in y).

? If g is convex, then Yg is convex.

Therefore, if g is a convex coe�cien t, nonincreasing in y ,

R g(� T ) � Yg(� � T ) is a dynamic g-conditional sub-linear convex risk measure.

T ypical example R > r )

g(t; y; z) =
1

2
k z k2 � (R � r )(y � hz; 1i )+
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In�nitesimal risk measure: �

In�nitesimal risk measure :

� dR g
t = g(t; R g

t ; Zt )dt� < Zt ; dWt > ; R g
T = � � T

) The coe�cien t of any g-conditional risk measureR g can be naturally

interpreted as the in�nitesimal risk measure over a time interval [t; t + dt]

as :

EP[dR g
t jF t ] = � g(t; R g

t ; Zt )dt;

where Zt is the local volatilit y of the g-conditional risk measure:

V(dR g
t jF t ) = jZ j2t dt

) Choosing carefully the coe�cien t g enablesto generateg-conditional risk

measuresthat are locally compatible with the views and practice of the

di�eren t agents in the market.
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Dual representation of g-conditional risk measures �

Dual represen tation of g-conditional risk
measures

? A g-conditional risk measureR g is said to have a dual representation if there

exists a set A of admissiblecontrols such that for any bounded s.t. S � T :

R g
S(� T ) = esssup(� ;� 2A EQ�

h
� e� � S ;T � T �

RT
S e� � S ;t G(t; � t )dt

�
�FS

i

where � S;t is a short version of
RT

S � sds and G(t; � ; � :) is the polar function

(Fenchel transform) of g(t; y; z).

? The problem is then to characterize the set A according to the conditions

imposedon the coe�cien t g :

) Under (H1) (solved by El Karoui-Peng-Quenez(1997)), A is the spaceof

adapted processes� bounded by the Lipschitz constant and Q� is the

equivalent probabilit y measurewith density � �
T : d� �

t = � �
t � �

t dWt ; � �
0 = 1.

) � is still non negative ) There is no needto look at (H2), as in this
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Dual representation of g-conditional risk measures �

framework, (H2) implies (H1).

) Under (H3), A is the spaceof BMO( P)-processes� and Q� is de�ned as

above.

SAMSI-F ebruary 2006 24



Inf-convolution of g-conditional risk measures �

Inf-con volution of g-conditional risk measures

We now comeback to our optimal designproblem, or equivalently to the

inf-convolution of two risk measures.

Notations :

? We denote the g-conditional risk measuresof both agents respectively by

R A and R B (the associated convex coe�cien ts are respectively gA and gB ).

? We are interested in the inf-convolution of R A
t and R B

t de�ned by

�
R A � R B �

t (X ) = inf
F

�
R A

t (X � F ) + R B
t (F )

	
:

? We intro duce the BSDE associated with the coe�cien t (gA � gB ) :

� dR A;B
t (X ) =

�
gA � gB �

(t; Yt ; Zt ) dt�h Zt ; dWt i with terminal conditionR A;B
T (X ) = � X
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Inf-convolution of g-conditional risk measures �

? Let (Yt = R A;B
t (X ) ; Zt ) be the solution of the BSDE (gA � gB ; � X ).

? Let bY B ; bZ B be adapted processessuch that, 8t � 0,

gA � gB (t; Yt ; Zt ) = inf
(Y B

t ;Z B
t

�
gA �

t; Yt � Y B
t ; Zt � Z B

t

�
+ gB �

t; Y B
t ; Z B

t

� 	

= gA
�

t; Yt � bY B
t ; Zt � bZ B

t

�
+ gB

�
bY B

t ; bZ B
t

�

Theorem : The following results hold :

(i ) For any t 2 [0; T] and any F such that R A
t (X � F ) and R B

t (F ) are well

de�ned :

R A;B
t (X ) � R A

t (X � F ) + R B
t (F ) P a:s:

(ii ) If bY B
t ; bZ B

t are admissible, then

8t 2 [0; T] R A;B
t (X ) =

�
R A � R B

�
t (X ) P a:s:
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Inf-convolution of g-conditional risk measures �

and the structure de�ned by the forward equation

F �
T = bY B

0 +
TR

0
gB

�
t; bY B

t ; bZ B
t

�
dt �

TR

0

D
bZ B

t ; dWt

E

is an optimal solution for (R A � R B )t (X ) = R A
t (X � F �

T ) + R B
t (F �

T ).
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