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Intro duction and Motiv ation

Intro duction and Motiv ation

Risk managemen t

New dewvelopmerts, new regulatory rules.
Credit risk regulation : Bale 11

Question : How to take into accourt ambiguity on interest rates, or time to
default ?. Classicalmonetary risk measures are not adaptedtoolsto do

that.
Design of new nancial pro ducts in this context

How the design nancial contracts to hedgenon- nancial risk :

"cat-b onds", weather derivatives...
Il liquid instruments, with an underlying assetwhich is not traded on

nancial markets.
Credit derivatives
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Intro duction and Motiv ation

Convergence and interpla y between nance and insurance
) Useof the knowledgeof nancial risk managemen to the managemen of

other kinds of risk.
) Use of the insurancetechnology to designstructured products.

How to separate the specic risk of the discount (defautable) risk
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Intro duction and Motiv ation

Some related works (among many others... ')

? Insurance liter ature on optimal policy design: Borch (1962), Bahimann (1970),
Raviv (1979), Gerber (1980)...

? Indi er ence pricing (often in an exponerntial framework) :
Hodges-Neulkerger(1989), Davis(1997), Rouge-EIl Karoui(2000), Becherer (2001),
Delbaen et al (2002), Musiela-Zariphop oulou (2004)....

? Risk measures

) (seminal papers) . Deprez-Gerber(1985), Artzner et al.(1999), Delbaen(2000),
Carr-G eman-Madan(2001), Fellmer-Schied(2002), Frittelli-Gianin(2002)...

) (multi-p eriod setting) : Scandolo (2003), Artzner et al.(2004), Cheridito et
al.(2004), Riedel (2004), Weber(2005), Detlefsen-Scandolo(2005), Frittelli-Scandolo
(2005), Kl eppel-Scweizer (2005)...

? BSDEs and nanc e : El Karoui-Quenez(1996), El Karoui-P eng-Quenez(1997),
Peng(1997,2003), Mania-Schweizer(2004)...
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Convex Risk measures: Basic properties

Convex Risk measures : Basic prop erties

De nition : Let ( ;F) be a standard measurablespaceand X the linear
spaceof bounded functions (including constart functions).
The functional is a monetary risk measure if it satis es :

Convexity, and Decreasing monotonicity ;
Translation invariance: 8X 2 X;8m2R; (X +m)= (X) m.
In particular, (X + (X)) = 0.

Commen ts

) (X) can be also interpreted asthe minimal capital requirementto be
addedto the position X to make it "acceptable" : the new position
X + (X) doesnot carry any risk with positive measure.

) (X) can be seenasthe maximum amount the agert is ready to pay to
hold the risk X in her portfolio.

) (X) can be seenasthe indi er ence buyer's price.
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Convex Risk measures: Basic properties

Dual represen tation

The convexity of the framework leadsto an "explicit" represenation
Theorem : There exists a penalty function taking valuesin R[ f+1g such
that :

8 2X,; () = supgom l;ffEQ[ ] (Q)g
8Q 2 M 4, (Q) = sup ox fEqQ[ ] () 9

where M 1+ IS the set of all additive measureson ( ;F).

Moreover, the supremum is attained in the rst equatiorhin M 1 E.rxample

The ertropic risk measureisdened ase () = InEp exp 1 ;

where is the risk tolerance coe cient .

Its dual represenation is :

e () =SUpgm , (el 1  N(QIP))

where M 1 is the set of all probability measureson ( ;F) and h(QjP) is the
relative entropy of Q w.r. to P.
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Risk measuresand hedging

Risk measures and hedging

Acceptance set : The acceptane set assaiated with  i1s de ned as:
A =f 2X; () 0g. A charaterizes = inffm 2 R;m+ X 2 A ¢

Sup er-hedging as risk measures

? Let H be a convex subsetof X consisting of potential hedges.Then

Ay =1t 2X;9 2H; g is the set of all super-hedgel positions.
) Ay de nes a cornvex risk measure " :
H() =inffm2 R;suchthat 9 2 H; m+ g
= Inf -y Sup, ( + )(' ) = Inf oy max( ):

H( ) is the superhedging price of

The assaiated penalty function is| H(Q) = sup ,4 Eq[ ]:
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Cash-Invariance and Discounting

Cash-In variance and Discoun ting

The de nition of monetary risk measureimplicitly assumeshat future risk
position and risk measureare expressedn the same num A c raire .

Convention :1p = 1 unit of cash,and 17 = 1 unit of cashavailable at time T.
Do.1 IS the random discourt factor.

Spot risk measure (Foellmer-Saied,2004)et Cash-invariance
0(Do;r X1+ mlpg)= o(DorX7)+ o(Ml); o(mly) = mlp
Forw ard risk measure (Rouge-El Karoui(2000))

T(X1)= 71Xy +mlr)= +(X7)+m 1(1y) and 1(1y)= 1
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Cash-Invariance and Discounting

Spot risk measure and Forward risk measure
Supposea zero-coup on B(0;T) in the market.
Then ' Do1X7 = Bo.1 7(X7) Isacashinvariante risk measurei

) 1(Dyr)= B(O;T).
) Then, for any Q7 in the domain of T,

Eq, (Do) = B(O;T)
) Qo belongsto dom( o) i
dQT - DO;T :B(O,T)on

belongsto dom( )
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Cash sub-additiv e Risk measure

Cash sub-additiv e Risk measure

Obserwe that, if R(X1) = (X1 Do), then

8m 0;8Xt 2 Xt; R(XT + mlT) = (XT DO;T + mDo;T)
(XT DO;T + mlo) = (XT DO;T) mly = R(XT) mly:

In other words, for any X1 2 Xt the function m2 R7! R(Xt + mly) + mlg
IS nondecreasing.R is said to be cash sub-additiv e.

Def : Any convex, decreasing, cash sub-additive functional de ned onX+ is
called Cash sub-additive Risk measure.

Monetary risk measure extension

The key property is that R(X1:;x) := R(Xt x17) X1 iscash invarian te
as a functional of (X+;Xx), since

RXt+m;x+m)=R(Xt+m (x+m)ly) (x+m)lg= R(X7;x) mil
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Cash sub-additiv e Risk measure

Enlarged space and lItration

(X1:;x) may ve viewed as the \coordinates" of somer.v. X1 on the extended
spaceb = f1; 0g such that

X(1; )= X7(1)1t z1g+ X1t zog

The correspondenceis oneto one.

Extended Risk measure

Let R be a cashsub-additive risk measurede ned on Xt. R generatesa
cash-monetary convex risk-measureb on the spaceX%t of the bounded O -r.v.

b X1l c1g+ X1t z0g = R X7;x =R X1 x1r  x1p;
(X1 (!)1; =14) canbeidentied with R(X7).
R(X7:x)=R(Xt x) x RXr y) y R(Yry) y=R(Y;y):

In terms of \economic default time" ,f = 1g may beviewedasfT < ¢
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Dual represertation of R

Dual representation of R
Any probability measure® on * can be decompsedinto
QX1 cig+ XLt 219= Q(F = 19)Q(X+jf = 1g)+ x(1 Q(f = 1g)
= Q' X1)+x(1 g

Characterization ~ The minimal penalty function ~(Q) = ( ) dependsonly
on = §Q?, and

8 n o)
% A(Q) = SprT 2X 1 ;Xx2R EQ[ (XT X)l =1] R(XT X)
3 = supy, ox, GQY Yr) R(Yr)

R(Xt) =supoysf ( Xr) ()9

Remark The risk measureR is not de ned on the spaceXt
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More natural extension

More natural extension

The aim of this extensionis to de ne a risk measure~on a spaceXt of

boundedr.v. containing Xt. We need

) todenetherv. X0 =X31_ +X¥1_

) to introducea arbitrary (normalized) monetary risk measure™ on order
to specify a \a priori" risk measurefor X 2.

Tw o monetary risk measures The functional ~ de ned by

(X314 +X¥15)=R XE+ (X9 + (X9

IS a monetary risk measure,with minimal penalty function, for any
Q=¢ Q'+ Q°
~Q = r &Q +¢ Q
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More natural extension

The functional | s (X1) = ~«Xt:;X7) |is @a monetary risk measurewith

penalty functional

- (Q) = inf R (6FQY) + &7 (Q1)
(e;QL:60:Q0% Q=61 Q1+ 62 Q%))

r doesnot allow usto recover R.
Let us denoted by Do.t the conditional expectation of 1 -; given Ft. Then,

Q(X711=)=Q(Xt1Dg7), and

(1 DO;T )

Q(Xt15)=Q(X1 (1 Dor));, dQ°= &

dQ

R(Xt) = SURQ oy )2a QU X7 Dor) (R DoriQ +e Q% g
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Optimal Derivative Design

Optimal Deriv ativ e Design

Agent A Agent B

ExposureX £ Fr ExposureX P
0

) We want to determine the optimal transaction (F; ).
Transaction feasibilit y

? Agent A looks for a hedgeof her exposure: infgox . ,Ra(X2  Fr)  o:

? Agent B wants to improve her risk measure: Rg (X2 + Fr)+ o  g(XE):

) Optimal pricing rule :| ( ;)o(Ff)=Rg X2 Rpg XB+F :
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Inf-convolution

Inf-con volution

Theorem : Let Rp and Rg be two cashsublinear risk measureswith

respective penalty functions  and pg. Let Rapg bethe inf-convolution of
R A and Rg

' Rap () Ra Re() = inf Ra( H)+Re(H)

and assumethat Rag (0) > 1

Then a.g Is a cashsub-linear convexrisk measure which is nite for all
2 X.

The assaiated penalty function is given by

8,; 2M3i; as( ;)= a(; )+ 8(; )

Ra.g IS continuous from below as soon as this property holdsfor Ra or Rg
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Dynamic Framew ork

Goal

To obtain an explicit characterization of the optimal transfer.

By reducing this in nite dimensional problem into a nite one.

The use of dynamic programing techniques(BSDES), may help to study risk
measuresde ned by their local speci cations.
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Dynamic entropic risk measure:

Dynamic entropic risk measure

It is de ned as:

e (X)= InEp exp iX =,

IS a typical dynamic cornvex risk measure.

Relationships with BSDEs
Moreover, it is possibleto relate it to BSDE since(e  (X);t 2 [0;T]) is
solution of the BSDE with the quadratic coe cien t g(t; z) = 2 kzk” :

de { (X) = Zi kz; k* dt he, : AWkl with the terminal condition e 1+ (X)= X

) The ideais then to relate dynamic corvex risk measureswith BSDEs.
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Dynamic convex risk measuresand BSDEs

Dynamic convex risk measures and BSDEs

Basic recall on BSDEs

The BSDE (g; 1) :

dY; = 9(t; Yi; Zy)dt < Zy;dWe > Yo = 1

has a (maximal, unique?) solution (Y;;Z;) under someconditions imposedon
the coecient g :

Uniformly Lipschitz (H1) (and 1 2 L?),

Continuous with linear growth (H2) (and 1 2 L?),

Continuous with quadratic growth (H3) (and 1 2 L! ). Mark ovian
Framew ork :(X:) with generatorL. Then, formally, Y; = u(t; X;),
Zy = ud(t; Xy) (t; X¢) and and HJBequation

ud(t; x) + Lu(t; x) + g(t; u(t; x); ud(t; x) (t;x)) =0
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Dynamic convex risk measures

Dynamic convex risk measures

? Let g be a standard coe cien t. The g-dynamic operator, denotedby Y9, is
such that Y?( 1) is the maximal solution of the BSDE (g; 1) :

dYt - g(t, Yt,Zt)dt < Zt;th > Yr = 71

Theorem : Let Y9 be the g-dynamic operator.

? Y9 is increasing monotonic, time-consistent (+) and arbitrage-free.

? Y9 is translation invariant (+) (cash-sublinar)if and only if g does not
depend on y (g is non increasing in y).

? If gis convex,then Y9 is convex.

Therefore, if g is a convex coecien t, nonincreasing Iin vy,
RY(+) YIY( ) is adynamic g-oonditional sub-linear convexrisk measure.
Typical example R > r)

otyi2) = 5 k2K (R Ny hedi)’

SAMSI-F ebruary 2006 21



In nitesimal risk measure:

In nitesimal risk measure

dRY = g(t; R%;Z)dt < Zi;dw,>; RY=

) The coe cien t of any g-conditional risk measureR 9 can be naturally
Interpreted asthe in nitesimal risk measure over a time interval [t; t + dt]
as:

Ep[dR{jF{] = g(t; RY;Zy)dt;
where Z; is the local volatilit y of the g-conditional risk measure:
V(dRPjF) = jZj?dt

) Choosing carefully the coe cien t g enablesto generateg-conditional risk
measuresthat are locally compatible with the views and practice of the
di erent ageris in the market.
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Dual represertation of g-conditional risk measures

Dual representation of g-conditional risk
measures

? A g-conditional risk measureR Y is said to have a dual representationif there

exists a set A of admissiblecontrols sud that for any boundeds.t. S T :
; h | RT | i
R5( 1) = esssup, . o Eq e ST 1 s € sStG(t t)dtFs

where s IS a short version of ST sds and G(t; ; :) is the polar function

(Fendhel transform) of g(t; y; z).

? The problem is then to characterize the set A accordingto the conditions
Imposedon the coe cient g:

) Under (H1) (solved by El Karoui-Peng-Quenez(1997)), A is the spaceof
adapted processes bounded by the Lipschitz constart and Q is the
equivalent probability measurewith density  :d ; = ; dW; o = 1.

) Is still non negative) There is no needto look at (H2), asin this
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Dual represertation of g-conditional risk measures

framework, (H2) implies (H1).

) Under (H3), A is the spaceof BMO(P)-processes and Q is de ned as
above.
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Inf-convolution of g-conditional risk measures

Inf-con volution of g-conditional risk measures

We now comebadk to our optimal designproblem, or equivalertly to the
inf-convolution of two risk measures.

Notations

? We denote the g-conditional risk measuresof both agerts respectively by
RA and RB (the assaiated convex coe cien ts are respectively g* and g®).

? We are interested in the inf-convolution of R# and RE de ned by

R® R® (X)=inf R{(X F)+R¢(F)

? We introduce the BSDE assaiated with the coe cient (g* ¢®) :

dRM® (X)= g o¢® (tY:;Z)dth Zg; dW;i with terminal conditionR%"® (X)
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Inf-convolution of g-conditional risk measures

? Let (Y; = R (X);Zt) be the solution of the BSDE (g* ¢®; X).
? Let ¥B; 2B pe adapted processesuc that, 8t 0,

¢ P Yz)= inf gt bV YRz 28 o+ g® 6YEiZe
t =t

=g* tY, 9Bz, 2% +¢° 9B BB
Theorem : The following results hold .

(i) For any t 2 [0; T] and any F suchthat R#(X F) and R? (F) are well
de ned :

RM (X) RAX F)+RB(F) Pas:

(ii ) If VB ;BB are admissible,then

8t2[0;T] R{® (X)= R* RE (X) Pas:
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Inf-convolution of g-conditional risk measures

and the structure de ned by the forward equation

R RD E
Fr= 9B+ g8 t9B:BB 28 - dw;
0 0

is an optimal solution for (R* RB){(X) = R{(X F;)+ RE(F7).
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