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Computationally Demanding Problems

• Monte Carlo simulation problems

– Derivative pricing

– Portfolio risk management

– Markov Chain Monte Carlo simulation

• Dynamic Programming

– Optimal asset allocation

– Optimal stopping

• Other problems; e.g., solving general equilibrium models

This talk will focus on parallel programming resources/algorithms and explore
their limits. Even though parallel programming can not address the curse
of dimensionality, it allows us to extend well understood methods to more
complicated problems.



Monte Carlo Simulation

• Monte Carlo simulation is based on the central limit theorem.

• Given independent, identically distributed variables Xi, the sum 1
N

∑N
i=1 Xi

is approximately distributed as a normal random variable with mean equal
to E(Xi), and standard deviation proportional to 1√

N
.

• To estimate E(X) one can simply generate N outcomes drawn from the
distribution of X and average them.

• In Finance, many quantities of interest are expressed as expected values;
e.g., option prices.



Derivatives of European Option Prices

For European options, one can calculate derivatives of the option price as a
weighted expected value (Broadie, Glasserman 96):
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where Q0 is the European option price, h is the payoff, g(S(T ), x) the transition
density of reaching S(T ), given S(0) = x. Thus, derivatives of European
options can be calculated by Monte Carlo simulation.



Derivatives of Bermudan Option Prices

One can also calculate bounds on Bermudan option prices using an idea based
on a dual representation of option prices, and a numerical approximation based
on a doubly-nested loop (Davis, Karatzas 94, Rogers 02, Haugh, Kogan 04,
Andersen, Broadie 04). It is possible to combine the two methods in a
triply-nested Monte-Carlo simulation and achieve bounds on the derivatives
of Bermudan options (Kaniel, T, Zemlianov 05).
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Parallelizing Monte-Carlo

Monte-Carlo simulations are straightforward to parallelize.

• Partitioning the load is simple

• Communication between processors is very limited

• Each processor generates independent draws and reports means and stan-
dard deviations to a central processor

• Care should be used in the “random” number generation between diffe-
rent processors

• We have implemented this process for calculating bounds on derivatives
of Bermudan option prices and verified that the speed of the algorithm
scales linearly with the number of processors.



Dynamic Programming

In dynamic programming, we solve an optimal control problem by maximizing
an objective function. The method consists of solving problems in a nested
fashion, where the solution of one problem becomes an input for the next
problem. A simple example of dynamic programming is a multi-player game,
where the players play only once, in a certain order and each player tries to
optimize an objective function. The solution is to find the optimal strategy
of the last player taking into account the positions of the earlier players, and
then find the optimal strategy of each player prior to the last one in order,
taking into account the optimal strategy of the following players.

In Finance, dynamic programming is used in pricing American options and in
optimal asset allocation problems.



Example: Tax Management Strategies with Multiple
Risky Assets

(Gallmeyer, Kaniel, T 05)

Setup: we consider the case of an investor that maximizes utility from con-
sumption and bequest over his lifetime, and whose investment opportunity
set consists of one riskless and two risky assets. The investor pays taxes on
dividends, interest, and realized capital gains.

Motivation: taxation is a significant determinant of asset allocation decisions.
When multiple risky assets are available, the investor may face conflicting
goals of diversification (to reduce risk) and the avoidance of trading (to
avoid realizing capital gains). Without capital gains taxes, an investor that
has access to risky assets will hold an index. This is not true with capital
gains taxes.



Computational Complexity

• Four State variables:

– Initial asset allocation for each risky asset (2)

– Initial basis for each risky asset (2)

• Three Choice variables

– Optimal asset allocation for each risky asset (2)

– Consumption (1)

• Time

Given that, at each time, the problem can be solved independently for each
initial allocation/basis, we solve in parallel, by partitioning the state-space
grid at each time between several processors. Communication is limited to
reporting the optimal allocations/consumption to a central processor, and
receiving information from the central processor, for each time, of the value
of the objective function at all the points of the state-space grid.



Systems available at UT-Austin

• longhorn

– IBM Power4 System, running AIX

– 224 processors: 224, 1.3 GHz each

• tejas

– 64 processors, 1.0 GHz each

• Other resources

– lonestar

∗ Cray-Dell PowerEdge Xeon Cluster, 1024 processors, 3.06 GHz
each, running Linux

∗ Point-to-point bandwidth: 250 MB/sec

– roundup

∗ 1297 processors, heterogeneous in terms of speed/OS.

∗ Uses United Devices software (SETI project)



Performance for the Optimal Asset Allocation
Problems with Capital Gains Taxes

longhorn tejas
Processors Nodes/Proc/Min Processors Nodes/Proc/Min

16 1289 14 1003
16 1125 14 966
16 1291 16 1000
16 1310 16 1001
16 1326 16 969
16 1305 16 964
16 1308 16 959
16 1334 16 979
16 1255 16 969
16 1313 16 971
48 1310 20 963
64 1142 24 960
64 1132 32 946

Slight decrease in performance with an increase in the number of processors
— evidence of increasing communication needs.



Optimal Asset Allocations

We are able to identify situations where the investor, ex-ante, prefers a non-
diversified position to minimize the realization of capital gains in the future.
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Conclusions

• Parallelization allows to study complex problems in Finance

• Monte-Carlo simulation and Dynamic Programming can be easily paral-
lelized, since tasks are largely independent and can be partitioned among
different processors, and the need for communication is limited.

• Even though parallelization allows for the study of complex problems, the
curse of dimensionality is not overcome.


