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Financial Mathematics/Engineering

• Use of stochastic models to quantify uncertainty in prices and

other economic variables.

• Often departs from classical economics by modeling at a

phenomenological level.

• Tools derived from probability theory, differential equations,

functional analysis, among others.

• Education :

– Dozens of Master’s programs, plus PhD and undergraduate

programs in Math, OR, Statistics departments.

– Great demand for Masters/PhD students with quantitative

training in financial math. Demand increases in economic

downtimes.

– Enormous textbook industry.
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Relation to Practice

• Interaction with financial services industry has gone both ways:

– Beauty of the Black-Scholes theory (1973) spurred growth

of options markets.

– Development of “structured products” (esp. in credit

markets - CDOs, CDO2s) currently way ahead of

mathematical technology.

• Very rapid transition from academic theory to (at least) testing

in investment houses.
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Relation to Academia

• A fair dose of give and take ...

• Early on (Harrison-Pliska, 1981) : Thus the parts of probability

theory most relevant to the general question [of market

completeness] are those results, usually abstract in appearance

and French in origin, which are invariant under substitution of

an equivalent measure.

• Last 25 years : Many new mathematical and computational

challenges created from financial applications.
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Outline

• Option Pricing

– Simple binomial tree model

– Continuous-time Black-Scholes theory

• Portfolio Optimization - Merton problem.

• Derivatives + Portfolio Optimization : utility indifference

pricing, convex risk measures.

• Credit Risk .
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Options + Derivative Securities

• Call Option on a Stock: Contract giving the holder the right,

but not the obligation to buy one share on expiration date T

for the strike price $K.

• Investor is betting that the stock price will exceed $K by date

T .

• Large profits if correct, but he/she loses everything if wrong.
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Example

• Investing in stocks vs. investing in options.

• K = $105, T = 6 months, today’s stock price = $100.

• With $1000, can buy 10 shares or 461 call options.
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One-Period Binomial Tree Model

• One time period of length T years.

• Current stock price S0 . Stock goes up to uS0 with probability

p , or down to dS0 with probability 1 − p.

uS0

S0

dS0
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Option Payoffs

• Let h(ST ) denote the payoff of the (European) option.

Call : h(ST ) = (ST − K)+ Put : h(ST ) = (K − ST )+

• Tree for the option:

h(uS0)

P0?

h(dS0)

• What is the fair price P0?

P0 6= e−rT (ph(uS0) + (1 − p)h(dS0)) .
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Replicating Strategy

• Look for a replicating portfolio whose payoff at maturity is

identical to (replicates) the option’s in both up and down

states .

• The portfolio is a strategy or investment which involves buying

a stocks and investing $b in the bank at time zero.

• If a or b are negative the stock is short-sold or the money is

borrowed from the bank. There are no further adjustments to

the portfolio till date T .

• The cost of setting up the portfolio at time zero is Π0 and

Π0 = aS0 + b.
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Replication Conditions

• Tree for the replicating portfolio tree is

auS0 + berT

aS0 + b

adS0 + berT

• For replication, we must solve

auS0 + berT = h(uS0)

adS0 + berT = h(dS0)

for a and b.
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No Arbitrage Condition

• We get

a =
h(uS0) − h(dS0)

(u − d)S0
,

b =
uh(dS0) − dh(uS0)

erT (u − d)
.

• If there is not to be an arbitrage opportunity , the price of the

option P0 must equal the cost of setting up the portfolio that

replicates it.

• Therefore,

P0 =
1 − de−rT

u − d
h(uS0) +

ue−rT − 1

u − d
h(dS0).
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Observations

• Hedging ratio given by

a =
h(uS0) − h(dS0)

uS0 − dS0
≈

∂P

∂S
?

• Option price is determined (uniquely) by enforcing no

arbitrage.

• The probability p played no role .
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Risk-Neutral Probability

• Recall that P0 is not given by

e−rT (ph(uS0) + (1 − p)h(dS0)) ,

where p is our specified probability (belief).

• Re-write the option pricing formula as

P0 = e−rT

(
erT − d

u − d
h(uS0) +

u − erT

u − d
h(dS0)

)
.

• Define

q =
erT − d

u − d
,

and notice then that

P0 = e−rT (qh(uS0) + (1 − q)h(dS0)) ,
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because
erT − d

u − d
+

u − erT

u − d
= 1.

• q is a probability as long as d < erT < u.
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To cut a long story short ...

• Under very general conditions (S is a semi-martingale ...),

absence of arbitrage is equivalent to the existence of a

risk-neutral (equivalent martingale) probability measure Q,

under which the discounted price of any traded security is a

martingale.

• Consequence : The price P0 of a claim paying the random

amount G on date T is given by

P0 = IEQ{e−rT G}.

• Complete Market: Q is unique .

• Otherwise (more common): many EMMs Q and market is

incomplete .
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Some references

• Binomial tree & Risk-neutral measure: Cox-Ross-Rubinstein

(1979)

• Discrete & Continuous time: Harrison-Kreps (1979);

Harrison-Pliska (1981).

• General semi-martingale theory: Delbaen-Schachermayer

(1994-98) .
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Samuelson Geometric Brownian Motion Model

Stock price random walk model Xt
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Black-Scholes Argument for Option Pricing

• Portfolio: buy one option Pt and sell ∆t stocks

Πt = Pt − ∆tXt.

• Choose ∆t to exactly balance the risks.

• If the combined portfolio can be made riskless , then the

market should price the option so that this investment yields

exactly the same as putting the money in the bank instead: no

arbitrage .
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Incrementally ...

• Portfolio is self-financing

dΠt = dPt − ∆tdXt.

• Assume Pt = P (t, Xt). Then, by Itô’s Formula

dPt =

(
∂P

∂t
+

1

2
σ2X2

t

∂2P

∂x2

)
dt +

∂P

∂x
dXt.

• Therefore

dΠt =

(
∂P

∂t
+

1

2
σ2X2

t

∂2P

∂x2

)
dt +

(
∂P

∂x
− ∆t

)
dXt.

• Choose

∆t =
∂P

∂x
(t, Xt)

to exactly balance the risks.
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No Arbitrage Argument

• With this choice, portfolio is perfectly hedged (over the

infinitesimal time period).

• To exclude the possibility of an arbitrage opportunity , the

riskless portfolio must grow as if we had invested the amount

$Πt in the bank.

• It must grow at the (risk-free) interest rate r: dΠt = rΠt dt.

• Since

Πt = P − ∆tXt = P − Xt
∂P

∂x
,

this gives
(

∂P

∂t
+

1

2
σ2X2

t

∂2P

∂x2

)
dt = r

(
P − Xt

∂P

∂x

)
dt.
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• Result: Price of option Pt = P (t, x) at time t when Xt = x is

given by a formula.

• The pricing function P (t, x) is found by solving a partial

differential equation:

∂P

∂t
+

1

2
σ2x2 ∂2P

∂x2
+ r

(
x

∂P

∂x
− P

)
= 0,

with terminal condition P (T, x) = (x − K)+.

• Hedging Strategy: Sell ∆t = ∂P
∂x (t, Xt) shares at time t.

ELIMINATES RISK

• Need only estimate historical volatility σ from past price data.
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Success of Black-Scholes

• Simple Black-Scholes pricing formula for European call option.

• Parameter estimation simple

Model (µ, σ) −→ Need σ .

The µ has vanished. Projections of µ highly variable and reflect

modeller’s expectations of the stock. Projections of σ

(probably) less subjective: take the historical estimate.

• Modern viewpoint : European option prices are set by the

market and are observed data .

• Theory/modelling is used to price other exotic derivative

securities consistent with these “vanilla ” contracts.
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Implied Volatility

• Observed European option prices are usually quoted in terms

of implied volatility I

Pobs = P (I).

Note: Easy to compute I because of explicit formula for P .

• If market actually priced according to Black-Scholes theory,

then we would get I ≡ σ , the constant historical volatility

from options of all strikes and expiration dates.
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Implied Volatility Smile Curve/Skew
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Stochastic Volatility

• Motivation

1. Estimates of historical volatility are not constant, have

“random” characteristics.

2. Implied volatility skew or smile.

3. Heavy-tailed and skewed returns distributions.

4. Other market frictions.

• Volatility σt is a stochastic process

dXt = µXt dt + σtXt dWt.
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Stochastic Volatility Models

• Volatility σt is a stochastic process

dXt = µXt dt + σtXt dWt,

introduced by Hull-White, Wiggins, Scott 1987, typically a

Markovian Itô process: σt = f(Yt),

dYt = α(Yt)dt + β(Yt)dẐt,

(Ẑt) =Brownian motion, correlation ρ

IE{dWt dẐt} = ρ dt.

• Problems

– How to model the volatility process: α, β, f?

– Derivative prices P (t, Xt, Yt) need today’s volatility

(unobserved ).

– Estimation of parameters of a hidden process.
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Generic Models

For a generic stochastic volatility model we obtain excess kurtosis

(peakedness) in stock price distribution. With correlation ρ < 0

obtain heavy left-tail over lognormal model.

40 60 80 100 120 140 160
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Stock Price in 6 months



29

Robust Results

• Renault-Touzi (1992)

Stochastic Volatility =⇒ SMILE

ρ = 0, subordination

Minimum at K = xer(T−t).
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• Genuine smiles were typically observed before the 1987 crash .



30

Skews & NonZero Correlation

• Numerical simulations & small-fluctuation asymptotic results

suggest

ρ < 0 =⇒ Downward sloping implied volatility

ρ > 0 =⇒ Upward sloping implied volatility .

• Robust to specific modeling of the volatility.

• Other approaches: Jumps.
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Overview

• Merton portfolio optimization problem.

• Utility indifference pricing mechanism.

• Optimal investment with derivative securities. Static-dynamic

hedging.
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Some History

• Samuelson 1960s: Brownian motion based models in economics.

• Merton 1969: utility maximization problem; explicit solution in

special cases (fixed mix investments).

• Black-Scholes 1973: solution of the option pricing problem

(under constant volatility); perfect replication/hedging of

options.

• Karatzas et al. 1986: mathematical study of optimization

problems in finance via convex duality.

• Kramkov & Schachermayer 1999: quite general duality theory

for semimartingale models.

• Hodges & Neuberger 1989: utility indifference pricing

mechanism.
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Merton Problem (1969/1971)

• How to optimally invest capital between a risky stock and a

riskless bank account?

• Objective function: expected utility of terminal wealth .

• Let XT be the portfolio value at time T (fixed). Want to

maximize

IE{U(XT )},

where U is an increasing and concave function. E.g.:

– U(x) = xp/p, p < 1, p 6= 0, x ∈ IR+ .

– U(x) = log x, x ∈ IR+ .

– U(x) = −e−γx, x ∈ IR .
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Control

• The control (πt) is a real-valued non-anticipating process

representing the dollar amount held in stock . (The original

Merton papers include a controlled continuous consumption

rate, which we ignore here).

• Geometric Brownian motion model for stock price (St) :

dSt

St
= µ dt + σ dWt,

where (Wt) = Brownian motion; σ = volatility.

• Let Xt be the value of the portfolio (or wealth).

dXt =
πt

St
dSt + r(Xt − πt) dt.

→ dXt = (rXt + πt(µ − r)) dt + σπt dWt.
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Objective

• Want to maximize IE{U(XT )} .

• Introduce value function

M(t, x) = sup
π

IE {U(XT ) | Xt = x} .

• Consider the associated Hamilton-Jacobi-Bellman (HJB)

equation

Mt + rxMx + sup
π

(
1

2
σ2π2Mxx + π(µ − r)Mx

)
= 0,

in t < T , with terminal condition M(T, x) = U(x) .
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• The optimization of the quadratic in π ∈ IR gives (in the

absence of constraints)

π∗ = −
(µ − r)

σ2

Mx

Mxx

and

max = −
(µ − r)2

2σ2

M2
x

Mxx
,

so the HJB becomes

Mt + rxMx −
(µ − r)2

2σ2

M2
x

Mxx
= 0.
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Power Utility

• Work with

U(x) =
xp

p
, p < 1, x ∈ IR+.

Admissible strategies such that

Xt ≥ 0 a.s. for t ∈ [0, T ].

• Now have terminal condition

M(T, x) =
xp

p
.

Look for a separable solution of the form

M(t, x) =
xp

p
g(t).
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• Substituting the ansatz into the HJB gives

xp

p

(
g′ + rpg −

(µ − r)2p

2σ2(p − 1)
g

)
= 0,

with g(T ) = 1.

• Final value function is

M(t, x) =
xp

p
exp

((
r +

(µ − r)2

2σ2(1 − p)
p(T − t)

))
.

• More importantly

π∗
t =

(µ − r)

σ2(1 − p)
Xt.

The optimal strategy is to hold the fixed fraction

(µ − r)

σ2(1 − p)

(the Merton ratio) of wealth in the stock.
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Exponential Utility

• Work with

U(x) = −e−γx, x ∈ IR.

• Recall

dXt = (rXt + πt(µ − r)) dt + σπt dWt.

Let X̂t = Xte
−rtand call π̂t = πte

−rt. Then

dX̂t = −rX̂t dt + e−rtdXt

= π̂tµ̂ dt + σπ̂t dWt,

where µ̂ = µ − r. W.l.o.g. we consider r = 0 case.

• Now have terminal condition

M(T, x) = −e−γx.
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• Look for a separable solution of the form

M(t, x) = −e−γxg(t).

• Substituting the ansatz into the HJB gives

−e−γx

(
g′ −

µ2

2σ2
g

)
= 0,

with g(T ) = 1.

• Final value function is

M(t, x) = −e−γx exp

(
−

µ2

2σ2
(T − t)

)
.
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• More importantly

π∗
t =

µ

γσ2
.

The optimal strategy is to hold the fixed amount

µ

γσ2

(the Merton ratio) in the stock.



42

Summary

• Solution to Merton optimal investment problem is explicit in

certain cases. Having explicit formulas makes verification

relatively straightforward.

• Generalizes to cases of multiple stocks with different rates of

return (a vector µ) and a variance-covariance matrix Σ. The

µ/σ2 in the Merton ratios is replaced by (ΣΣT )−1µ.

• General complete markets theory using replicability of

FT−measurable claims G by dynamic trading strategies

G = x +

∫ T

0

πt
dSt

St

is well-established (see e.g. book by Karatzas & Shreve (1998)).

• Interesting problems: adding derivative securities in incomplete

markets.
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Derivative Pricing in Incomplete Markets

• Stock price process

dSt = µSt dt + σ(Yt)St dWt

• Volatility-driving process

dYt = b(Yt) dt + a(Yt) (ρ dWt + ρ′dZt) .

(Wt) and (Zt) are independent Brownian motions on a

probability space (Ω,F , IP ) and ρ′ =
√

1 − ρ2.

• Volatility is not a traded asset, and the market is said to be

incomplete.

• A (European) derivative security pays g(ST ) on expiration date

T in the future.
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• Consequence of incompleteness: this payoff cannot be

replicated by trading the stock.

• Black-Scholes case: σ =const. and there is a unique

equivalent martingale measure IP ? under which the traded

asset is a martingale:

dSt = σSt dW ?
t ,

with (W ?
t ) a IP ?−Brownian motion.

• The derivative price is

h(S, t) = IE?{g(ST ) | St = S},

and this function solves the Black-Scholes PDE problem

ht +
1

2
σ2S2hSS = 0,

h(S, T ) = g(S).
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Volatility Risk-Premium & No-arbitrage Pricing

• Basic theorem in finance: for there to be no arbitrage

opportunities, there must exist some equivalent probability

measure under which prices of traded securities are martingales.

• In a diffusion model, equivalent measures IP ? are ”generated”

by a Girsanov transformation: add a drift to the Brownian

motions

dWt 7→ dW ?
t − ct dt dZt 7→ dZ?

t − λt dt.
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• For (St) to be a IP ?−martingale, ct = −µ/σ(Yt), but λt is

arbitrary and called the volatility risk premium. It

parameterizes the set of equivalent martingale measures.

• Under IP ?(λ),

dSt = σ(Yt)St dW ?
t

dYt =

[
b(Yt) − ρµ

a(Yt)

σ(Yt)
− ρ′a(Yt)λt

]
dt

+a(Yt) (ρ dW ?
t + ρ′dZ?

t ) .
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Utility-Indifference Pricing

• Investor’s wealth process (Xt)

dXt = πt
dSt

St
= µπt dt + σ(Yt)πt dWt,

where πt is the amount held in the stock at time t.

• Utility function U(x) = −e−γx : increasing, concave; defined on

x ∈ IR; γ > 0 is called the risk-aversion coefficient.

• Derivative writer’s problem : maximize expected utility of

wealth at time T after paying out to derivative holder

V (x, S, y, t) = sup
π

IE
{
−e−γ(XT −g(ST )) | Xt = x, St = S, Yt = y

}
.

The starting wealth is denoted x.
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• Classical Merton problem: maximum utility from trading the

stock (no derivative liability).

M(x, y, t) = sup
π

IE
{
−e−γXT | Xt = x, Yt = y

}
.

• Utility-indifference (writer’s) price h(x, S, y, t) of the derivative

is defined by

M(x, y, t) = V (x + h(x, S, y, t), S, y, t),

the compensation to the derivative writer such that he/she is

indifferent in terms of maximum expected utility to the

liability from the short position.

• References: Hodges-Neuberger (1989),

Davis-Panas-Zariphopoulou (1990).

• In the constant volatility complete case, this recovers the

Black-Scholes price (in fact for any utility function).
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Indifference Pricing PDE

• If the utility is exponential, h is independent of initial wealth x:

h = h(S, y, t). (This is essentially if and only if).

• From the Hamilton-Jacobi-Bellman (HJB) equation for V and

the HJB equation for M , we get a (quasilinear) PDE problem

for h:

ht + L̃S,yh +
1

2
a(y)2(1 − ρ2)γh2

y = 0,

h(S, y, T ) = g(S),

L̃S,y =
1

2
σ(y)2S2 ∂2

∂S2
+ ρσ(y)a(y)S

∂2

∂S∂y
+

1

2
a(y)2

∂2

∂y2

+

[
b(y) − ρµ

a(y)

σ(y)
+ a(y)2

my

m

]
∂

∂y
,

the infinitesimal generator of (St, Yt) under the martingale

measure IP ?
m.
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• Under the martingale measure IP ?
m, (St, Yt) follows

dSt = σ(Yt)St dW ?
t

dYt =

[
b(Yt) − ρµ

a(Yt)

σ(Yt)
+ a(Yt)

2 my

m

]
dt

+a(Yt) (ρ dW ?
t + ρ′dZ?

t ) .

• The function m(y, t) in the coefficient comes from the value

function of the Merton problem

M(x, y, t) = −e−γxm(y, t)1/(1−ρ2).

It satisfies a linear PDE and does not depend on γ:

mt +
1

2
a(y)2myy +

[
b(y) − ρµ

a(y)

σ(y)

]
my −

µ2(1 − ρ2)

2σ(y)2
m = 0,

with m(y, T ) = 1.
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Option on Non-Traded Asset

• Suppose the option is on the volatility: g = g(YT ). The

interpretation is that Y is a non-traded asset like temperature

on which we have a weather derivative which we try and hedge

with a correlated asset S like electricity.

• Now S disappears from the problem and h = h(y, t). The

indifference pricing PDE is just

ht + L̃yh +
1

2
a(y)2(1 − ρ2)γh2

y = 0,

h(y, T ) = g(y),

L̃y =
1

2
a(y)2

∂2

∂y2
+

[
b(y) − ρµ

a(y)

σ(y)
+ a(y)2

my

m

]
∂

∂y
.
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Transformation to a Linear PDE

• The reduction in dimension allows a Hopf-Cole-type

transformation h = k log φ so that

hy = k
φy

φ
, hyy = k

(
φyy

φ
−

φ2
y

φ2

)
,

so the PDE becomes

k

φ

(
φt + L̃yφ

)
− k

1

2
a(y)2

φ2
y

φ2
+

1

2
a(y)2γk2

φ2
y

φ2
= 0.

• Therefore, choosing

k =
1

γ(1 − ρ2)
,

gives the linear PDE φt + L̃yφ = 0, with

φ(y, T ) = exp(γ(1 − ρ2)g(y) .
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Probabilistic representation

h(y, t) =
1

γ(1 − ρ2)
log IE

IP ?
m

t,y

{
eγ(1−ρ2)g(YT )

}
.
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Summary

• In Markovian models, indifference price is typically

characterized by quasilinear PDE problem. [This can be

transformed to a linear problem when there is only one space

variable e.g. non-traded asset case.]

• Indifference pricing seems a reasonable preference-based

valuation mechanism in illiquid, OTC markets e.g. for some

credit derivatives . Perhaps less so in liquid equity markets

where no arbitrage valuation is possible.

• However, the original investment problem with derivatives and

stocks is of interest in such cases, and its solution has an

interpretation in terms of the indifference price.
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Problem Statement

• In an incomplete market, an investor would like to use

derivatives to indirectly trade untradeable risks.

• Example: Using straddles to be “long volatility”.

• How many derivative contracts to buy to maximize expected

utility?

• Or how many vanilla options to optimally hedge an exotic

options position?

• Tractable under exponential utility.
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Simplest Setting

• Investor has initial capital $x.

• He/she can invest dynamically in a stock (and bank acct.) and

statically in a single derivative security that pays G on date T .

• Market price of the derivative is $p.

• Investor buys and holds λ derivatives and trades his/her

remaining $(x − λp) continuously in the Merton portfolio

(stock & bank account).
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Notation

• Value of the Merton portfolio is (Xt)0≤t≤T , and (πt) is the

amount held in the stock (the dynamic control). Throughout,

interest rate r = 0.

• Let

u(x; λ) = sup
π

IE
{
−e−γ(XT +λG) | X0 = x

}
,

where γ > 0 is the risk-aversion parameter.

• Objective:

max
λ

u(x − λp; λ).
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Duality with Relative Entropy Minimization

If G is bounded and the price process S is locally bounded, then

Delbaen, Grandits, Rheinlander, Samperi, Schweizer & Stricker

(2002) show

u(x; λ) = −e−γxe−γ infQ[IEQ{λG}+ 1

γ
H(Q|IP )],

where IP is the subjective measure, Q ∈ Pf with

Pf = {ALMMs with finite relative entropy} ,

and

H(Q | IP ) = IE

{
dQ

dIP
log

dQ

dIP

}
= EQ

{
log

dQ

dIP

}
.
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Utility-Indifference Price

• Let b(λ) be the buyer’s utility-indifference price of λ derivatives:

u(x; λ) = u(x + b(λ); 0).

• By duality,

u(x; λ) = −e−γ(x+b(λ))e− infQ H(Q|IP ),

so that

u(x − λp; λ) = −e−γ(x+b(λ)−λp)e− infQ H(Q|IP ).

• The problem is reduced to

max
λ

b(λ) − λp,

the Fenchel-Legendre transform of the indifference price at the

market price p.
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Characterization of the Indifference Price

• From the duality,

b(λ) = inf
Q

{
λIEQ{G} +

1

γ
H(Q | IP )

}
− inf

Q

1

γ
H(Q | IP ).

• As b(λ) is the infimum of affine functions of λ, it is concave.

• Can show: differentiable and strictly concave.
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Hedging Barrier Options

• Down-and-in call option; barrier at B < S0; payoff

GB = (ST − K)+1τB≤T ; τB = inf {t ≥ 0 : St ≤ B} .

• Use a vanilla put with strike K′ = B2/K for a static hedge.

Payoff is GP = (K′ − ST )+, market price is P .

• Given initial capital $v, sell λ ≥ 0 puts. Problem is

max
λ≥0

u(v + λP ; Gλ),

where

u(x; Gλ) = sup
π

IE
{
−e−γ(XT −Gλ) | X0 = x

}
,

Gλ = λGP − GB .
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Connection to Indifference Price

• Similar to before, reduces to

max
λ≥0

λP − h(Gλ),

where h(Gλ) is the (writer’s) indifference price of the barrier

option.

• In the stochastic volatility model, h(t, S, y) solves for t < T ,

S > B:

ht + LS,yh +
1

2
γ(1 − ρ2)a(y)2h2

y = 0

h(T, S, y) = λ(K′ − S)+

h(t, B, y) = h?(t, B, y)

with h? the indifference price of the European

λ(K′ − ST ) − (ST − K)+.
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Barrier Indifference Price

B = 85 K = 100 T = 0.5 γ = 1.5.
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Slope

dh(Gλ)/dλ
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Risk Measures

The convenient properties of the exponential utility function have

been axiomatized in a beautiful theory of risk measures.

Definition 1. A mapping ρ : X 7→ R is called a convex measure of

risk if it satisfies the following for all X, Y ∈ X :

• Monotonicity: If X ≤ Y , ρ(X) ≥ ρ(Y ).

• Translation Invariance: If m ∈ R, then ρ(X + m) = ρ(X) − m.

• Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ), for

0 ≤ λ ≤ 1.

• If also: Positive Homogeneity: ρ(λX) = λρ(X), ∀λ ≥ 0, it is

called a coherent measure of risk.

Under positive homogeneity, convexity is equivalent to:

• Subadditivity : ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
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• A classical example of a convex risk measure is related to

exponential utility:

∀X ∈ X , eγ(X) =
1

γ
log
(
E
{
e−γX

})
.

• Any convex risk measure ρ on X is of the form

ρ(X) = sup
Q∈M1,f

(
E

Q{−X} − α(Q)
)
, ∀X ∈ X , (1)

where the minimal penalty function α is given by

α(Q) = sup
X∈X

(
E

Q{−X} − ρ(X)
)
, ∀Q ∈ M1,f . (2)

Moreover, the supremum in (1) is attained, and α is convex.

• If ρ were a coherent risk measure, in addition to being convex,

the representation is

ρ(X) = sup
Q∈Q

E{−X}, ∀X ∈ X . (3)
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Comments and References

• Axiomatic study of risk measures introduced by Artzner,

Delbaen, Eber, Heath (1999) gained a lot of attention due to

the failure of a common risk measure, Value at Risk, to reward

diversification.

• Subsequently, Follmer and Schied (2002) relaxed the positive

homogeneitycondition.

• Many convex, but non-coherent, risk measures of the form

ρ(X) = inf{m ∈ IR | IE{`(−X − m)} ≤ x0},

for a convex loss function `.

• Major research issue: construction and computation of

dynamic risk measures.
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Credit Risk

• Defaultable instruments, or credit-linked derivatives, are

financial securities that pay their holders amounts that are

contingent on the occurrence (or not) of a default event such as

the bankruptcy of a firm, non-repayment of a loan or missing a

mortgage payment.

• The market in credit-linked derivative products has grown more

than seven-fold in recent years, from $170 billion outstanding

notional in 1997, to almost $1400 billion through 2001.
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• The primary problem is modeling of a random default time

when a firm or obligor cannot or chooses not to meet a

payment. This may come from a diffusion model of asset values

hitting a fixed debt level, in which case we can, in some sense,

see the default event coming; or it may be modeled as the jump

time of some exogenous Poisson-type process (which does not

have a direct economic interpretation), in which case the

default comes as a surprise.

• The major challenge is extending useful single-name

frameworks to the multi-name case, assessing accurately

correlation of defaults across firms, and evaluating basket

portfolios affected by many sources of credit risk.
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Constant Volatility: Black-Cox Approach

IE?
{
1{inft≤s≤T Xs>B} | Ft

}

= IP ?

{
inf

t≤s≤T

(
(r −

σ2

2
)(s − t) + σ(W ?

s − W ?
t )

)
> log

(
B

x

)
| Xt = x

}

computed using distribution of minimum, or using PDE’s:

IE?
{

e−r(T−t)
1{inft≤s≤T Xs>B} | Ft

}
= u(t, Xt)

where u(t, x) is the solution of the following problem

LBS(σ)u = 0 on x > B, t < T

u(t, B) = 0 for any t ≤ T

u(T, x) = 1 for x > B,

which is to be solved for x > B.
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Yield Spread Curve

The yield spread Y (0, T ) at time zero is defined by

e−Y (0,T )T =
P B(0, T )

P (0, T )
,

where P (0, T ) is the default free zero-coupon bond price given here,

in the case of constant interest rate r, by P (0, T ) = e−rT , and

P B(0, T ) = u(0, x), leading to the formula

Y (0, T ) = −
1

T
log

(
N (d2(T )) −

( x

B

)1− 2r

σ2

N
(
d−
2 (T )

))
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Figure 1: The figure shows the sensitivity of the yield spread curve to the

volatility level. The ratio of the initial value to the default level x/B is set

to 1.3, the interest rate r is 6% and the curves increase with the values of

σ: 10%, 11%, 12% and 13% (time to maturity in unit of years, plotted on

the log scale; the yield spread is quoted in basis points)
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Challenge: Yields at Short Maturities

As stated by Eom et.al. (empirical analysis 2001), the challenge for

theoretical pricing models is to raise the average predicted spread

relative to crude models such as the constant volatility model,

without overstating the risks associated with volatility or leverage.

Several approaches (within structural models) have been

proposed to capture significant short-term spreads. These include

• Introduction of jumps (Zhou,...)

• Stochastic interest rate (Longstaff-Schwartz,...)

• Imperfect information (on Xt) (Duffie-Lando,...)

• Imperfect information (on B) (Giesecke)
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Typical Single-Name Intensity Models

• All models under pricing measure IP ?.

• Default time τ is first jump of a time-changed (standard)

Poisson process:

N

(∫ t

0

λs ds

)
,

where N and λ are independent.

• Draw ξ ∼ EXP(1), then

τ = inf

{
t :

∫ t

0

λs ds = ξ

}
.

• E.g.: λ is a diffusion (CIR).
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Defaultable Bond Pricing

• Payoff 1{τ>T}.

• Price

P0(T ) = IE?
{
e−rT

1{τ>T}

}

= e−rT IP ?{τ > T}

= IE?

{
exp

(
−

∫ T

0

(r + λs) ds

)}
.

• Same structure as short rate models.

• Yield spread: P0(T ) = exp(−(r + Y (T ))T ):

Y (T ) = −
1

T
log

(
P0(T )

e−rT

)
.
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Issues

• Intensity models resolve a major shortcoming of (constant

volatility) structural models: yield spreads not small at short

maturities.

• E.g.: for λ constant, Y (T ) = λ.

• Loss of economic intuition – why a default? No direct relation

to firm’s stock price.

• While single name default time models can be calibrated, how

to deal with joint distributions?

• How to compute with ∼ 300 names?



78

Complex Structured Products

• CDOs (Collateralized Debt Obligations) depend on the number

of defaults over a fixed time of a number (∼ 300) firms.

• Various slices of the loss distribution are sold as tranches , and

these are sensitive to the correlation between default events.

• CDO2’s collate tranches of different CDOs. There are even

CDO3’s !!!

• Only computationally tractable approach so far is through

copulas – highly artificial “correlator”.

• Frontpage Wall Street Journal article 9/12/05: How a formula

ignited a market that burned investors .


