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Motivation for research

� Some alternative time series models can be dif�cult to disti nguish
statistically, but a choice among them can have important
implications for assessing risk and valuing risking claims.

� Probability models are often said to be approximations, but the
approximation errors in question are not described explicitly.
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Current paper

� Study robust notions of learning and model averaging in
conjunction with decision making.

� Recursive formulation - a related paper considers a commitment
formulation - Hansen-Sargent forthcoming in JET
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Exploit well known algorithms for updating probabilities

Hidden state Markov processes

� Kalman �ltering - Linear, Gaussian models
� Wonham �ltering - Finite state hidden state Markov chain

disguised by Brownian motion
� Zackai equation - clever change in probabilities
� particle �ltering
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Related work

� Stochastic Versions of Robust Control: e.g.,
Petersen, James, and Dupuis (2000) IEEE Transactions in
Automatic Control

� Hansen, Sargent, Turmuhambetova, and Williams (2004)
forthcoming in JET

� Epstein and Schneider (2003a) and
Epstein and Schneider (2003b)

� Ongoing work of Brock, Durlauf, and West.
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Example: model selection and long run risk

� Recent work in macro and asset pricing exploits implications
under rational expectations of one of a set of models that have
similar medium-sized-sample statistical properties, but very
different long run properties.

� Prices in decentralized economies are sensitive to which model is
imputed to the private agents.

� A robustness perspective raises the question: why focus on one
of the dif�cult-to-distinguish competing models?

� We advocate leaving multiple models on the table and using
robust model selection/averaging.
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Martingales and Distorted Probabilities

� Event collections fX t : t � 0g where Xt is the date t information
set. Let P r denote a probability measure on X1 = _ t � 0Xt .

� Nonnegative martingale f M t : t � 0g where M 0 = 1 ;
E (M t jX0) = 1 .

� Distorted probability

~E(x t jX0) = E (M t x t jX0)

where M t is a likelihood ratio or a R-N derivative.
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Entropy

� What is it?

EM logM

where EM = 1 . Average log - likelihood.
Use gradient inequality

M logM � M � 1

� Why the name?

When Shannon had invented his quantity and consulted von Neumann
on what to call it, von Neumann replied: `Call it entropy. It is already in
use under that name and besides, it will give you a great edge in
debates because nobody knows what entropy is anyway.'
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Penalized distorted beliefs problem

� Problem

min
M � 0;EM =1

E (M [V + � log(M )])

� Solution - exponential tilting

M � =
exp

�
� 1

� V
�

E
�
exp

�
� 1

� V
��

� Minimized objective

� � logE
�
exp

�
�

1
�

V
��
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Static formulation of robust control

� Let a be an action in a feasible set A and let x be an unknown
state. Informational restrictions can be imposed on the action.
Actions and states can be processes. Objective can be
discounted utility.

� Problem

sup
a2A

inf
M � 0;EM =1

E (M [V(a; x) + � log(M )])

Worst case M � depends on action. Zero sum game.
� Reverse orders:

inf
M � 0;EM =1

sup
a2A

E (M [V(a; x) + � log(M )])

Action a� optimizes against a �xed probability. 'Bayesian solution' .
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Multiplicative decomposition

Form mt +1 :

M t +1 = mt +1 M t

where

E (mt +1 jX t ) = 1

Then

M t =
tY

j =1

mj

The random variable mt +1 distorts the transition density between date
t and date t + 1 . Factoring (relative) likelihood.
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Robust Control and Discounted Entropy

� Recursive solution in which date t minimizing agent chooses mt +1

subject to penalty �E [mt +1 log(mt +1 )], while maximizing agent
chooses at .

� Hansen and Sargent (1995),
Anderson, Hansen, and Sargent (2003) and
Hansen, Sargent, Turmuhambetova, and Williams (2004)

Complaints

� Single benchmark model with perturbations around that model -
Levin, Wieland and Williams

� No focused consideration of parameter uncertainty - Onatski and
Williams

� No scope for learning

Introduce a hidden state Markov process as a motivation for learning.
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Incorporating learning

Two robustness recursions:

1. Allow for misspeci�ed dynamics as before using mt +1 conditioned
on a big information set that includes information on a history of
hidden states.

2. Systematic fragility analysis of posterior probabilities used for
averaging over the hidden states – another perturbation called ht

to be described soon.
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Observations

1. hidden states can be time invariant and hence index alternative
models or unknown parameters

2. hidden states can evolve as a Markov chain - time varying
parameter models - regime shift models

3. exploit tools for solving hidden state Markov chain models

4. minimizing agent has an informational advantage

5. we suggest a recursive formulation
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Learning, commitment, and recursivity

Related papers:

� Hansen and Sargent (2005) commitment counterpart to this
paper - builds on Basar and Bernhard (1995) and others.

� Chamberlain (2000) and Knox (2003) closely related commitment
problems.

� Epstein and Schneider (2003a) and
Epstein and Schneider (2003b) avoid commitment in a different
but related formulation
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Alternative decompositions of M t

Let St denote a signal history smaller than Xt :

� Decompose M t +1 = mt +1 M t . Use mt +1 to distort dynamics
conditioned on the hidden state history.

� Impose penalty (� 1) on E[mt +1 log(mt +1 )jX t ].
� Decompose:

M t = ht Gt ; E (ht jSt ) = 1 :

� Use ht to distort the probabilities assigned to Xt events
conditioned on St

� Impose penalty (� 2) on E(ht loght jSt ).
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Baseline Problem Setup

� Partition a state vector as x t =

"
yt

zt

#

, where yt is observed and zt

is not. Let st denote a vector of signals of the unobserved state zt .
� Let Z denote a space of admissible unobserved states, Z a

corresponding sigma algebra of subsets of states, and � a
measure on the measurable space of hidden states (Z; Z ). Let S
denote the space of signals, S a corresponding sigma algebra,
and � a measure on the measurable space (S;S) of signals.

SAMSI – p. 17/29



State Evolution

� Signals and states are determined by the transition functions

yt +1 = � y (st +1 ; yt ; at ); (1)

zt +1 = � z (x t ; at ; wt +1 ); (2)

st +1 = � s(x t ; at ; wt +1 ) (3)

where f wt +1 : t � 0g is an i.i.d. sequence of random vectors.

� Observable state evolution:

yt +1 = �� y (x t ; at ; wt +1 ):

� Equations (3) and (2) determine a conditional density
� (zt +1 ; st +1 jx t ; at ) relative to the product measure � � � .
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Recursive Formulation

� Use � to construct two densities for the signal:

� (s� jyt ; zt ; at )
:=

Z
� (z� ; s� jyt ; zt ; at )d� (z� )

&(s� jyt ; qt ; at )
:=

Z
� (s� jyt ; z; at )qt (z)d� (z):

� By Bayes' rule,

qt +1 (z� ) =

R
� (z� ; st +1 jyt ; z; at )qt (z)d� (z)

&(st +1 jyt ; qt ; at )
:= � q(st +1 ; yt ; qt ; at ):

� q can be computed by using �ltering methods that specialize
Bayes' rule (e.g., the Kalman �lter or a discrete time version of the
Wonham �lter or Zackai equation).
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Constructed State Vector

� Take (yt ; qt ) as the state with transition law

yt +1 = � y (st +1 ; yt ; at )

qt +1 = � q(st +1 ; yt ; qt ; at ):

� Choose at as a function of (yt ; qt ).

One strategy is apply our earlier ”full information” approach to
stochastic robust control to this problem!! We will consider alternatives.
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A Bellman equation for a model with a hidden state

W (y; q) = max
a2 A

Z n
U(x; a)+ �

Z
W � [� (s� ; y; q; a)] &(s� jyt ; qt ; at )d� (s� )

o

or

W (y; q) = max
a2 A

Z n
U(x; a) + �

Z
W � [� (s� ; y; q; a)] � (s� jy; z; a)

d� (s� )
o

q(z)d� (z):

Could also have a full information counterpart - computationally
wasteful.
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Robustness and hidden states

� Two agents face different information restrictions. Minimizing
agent can �nd distortions conditioned on hidden states.

� Break link between recursive and commitment formulations using
two robustness recursions.

� Control is forward looking and solved by backward induction.
� Prediction is backward looking and solved by forward induction.
� Forward- and backward- looking considerations induce tension in

constructing worst-case models.
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Recursive formulation

� Two distinct distortions at date t:

1. Distort dynamics for (x t +1 ; st +1 ) conditioned on (x t ; qt ). mt +1

distortion from before. Distort probabilities assigned to Xt +1

conditioned on Xt .
2. Distort hidden state probabilities qt , or more generally, the

conditional probabilities assigned to Xt events conditioned on
St .

� We do not simply “reduce compound lotteries”, where the
compounding is over hidden state zt .
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Recursive Distortion of State Dynamics

Consider a value function V (yt +1 ; qt +1 ; zt +1 ),

T1(V j� )(y; q; z; a) =

� � log
Z

exp
�

�
V [� (s� ; y; q; a); z� ]

�

�
� (z� ; s� jy; z; a)d� (z� )d� (s� ):

The transformation T1 maps a value function that depends on the state
(y; q; z) into a risk-adjusted value function that depends on (y; q; z; a).
Associated with this risk adjustment is a worst-case distortion in the
transition dynamics for the state and signal process:

� t (z� ; s� ) =
exp

�
� V [� (s� ;y t ;qt ;a t ) ;z � ]

�

�

E
h
exp

�
� V [� (st +1 ;y t ;qt ;a t ) ;z t +1 ]

�

�
jX t

i :
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Recursive Distortion of State Probabilities

Consider a value function of the form: V̂ (yt ; qt ; zt ; at ) and operator:

T2(V̂ j� )(y; q; a) = � � log
Z

exp

"

�
V̂ (y; q; z; a)

�

#

q(z)d� (z):

The worst case density conditioned on St is  t (z)qt (z) where

 t (z) =
exp

�
� V̂ (y t ;qt ;z;a t )

�

�

E
h
exp

�
� V̂ (y t ;qt ;z;a t )

�

�
jSt

i :
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Recursive Game I

When the value function depends only on the reduced information
encoded in y; q:

W (y; q) = max
a

T2 �
U(x; a) + T1 [�W � (y� ; q� )j� 1] j� 2

�
(y; q; a)

SAMSI – p. 26/29



Recursive Game II

Alternative approach keeps track of a value function that depends on
the hidden state.

�W (y; q; z) = U(x; a) + T1 �
� �W � (y� ; q� ; z� )j� 1

�
(x; q; a)

after choosing an action according to

max
a

T2 �
U(x; a) + T1 �

� �W � (y� ; q� ; z� )j� 1
�

j� 2
	

(y; q; a):
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Issues and Extensions

� Incompatible probability assignments over hidden states;
� Construct well de�ned worst case probabilities over signal s -

objects that restrict actions, contracts etc.
� Risk-base approach - relax the reduction of compound lotteries as

in Segal (1990), Klibanoff, Marinacci, and Mukerji (2003), and
Ergin and Gul (2004).

� Constraints instead of penalties - Epstein and Schneider (2003b).
� Penalties that depend on states - Maenhout (2004) and

Lin, Pan, and Wang (2004).
� Model uncertainty premia are tied to worst-case models of signal

distributions in decentralized versions.
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Applications

� Learning and experimentation in monetary economics
� Savings and investment in permanent income and stochastic

growth models
� Asset valuation and learning in model with long run uncertainty -

based on models of risk that are hard for researchers and
investors to infer from historical data - (Bansal - Yaron
macro/�nance time series, Bansal and co-authors, Campbell and
co-authors study cross-section return relations -
Hansen-Heaton-Li explore long run risk measures and statistical
challenges)

� hidden growth states
� unknown growth rate parameters
� ambiguity across competing models of cash �ow and

consumption growth
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