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Summary The factor GARCH model of Engle (1987) and the latent factor ARCH model of
Diebold and Nerlove (1989) have become rather popular multivariate volatility parametriza-
tions due to their parsimony, and the commonality in volatility movements across different
financial series. Nevertheless, there is some confusion in the literature between them. The
purpose of this paper is to make clear their similarities and differences by providing a formal
nesting of the two models, which can be exploited to analyse their statistical features in a more
general context. At the same time, their differences may be important in the interpretation of
empirical results.
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1. INTRODUCTION

Most of the econometric and finance literature on time-varying volatility models is concerned
with univariate time series. However, many issues in finance can only be fully addressed within a
multivariate framework. Although multivariate generalizations of the existing univariate models
are straightforward in theory, their empirical applications have been hampered by the sheer number
of parameters involved. Motivated by the commonality in volatility movements across different
financial time series, several parsimonious alternatives have been proposed. Within the ARCH
class, two such parametrizations have become rather popular, namely the factor GARCH model of
Engle (1987) and the conditionally heteroskedastic latent factor model introduced by Diebold and
Nerlove (1989) and extended by Kinget al. (1994). Broadly speaking, Engle’s factor GARCH
model specifies the time-varying part of the covariance matrix as a function of a few linear
combinations of the observed random variables, but leaves its constant part fully unrestricted.
On the other hand, Diebold and Nerlove’s model is a traditional statistical factor analysis model,
with a diagonal idiosyncratic covariance matrix, in which the variances of the common factors
are parametrized as univariate ARCH models. Given that the two models are closely related,
it is perhaps not surprising that there is some confusion in the literature on the similarities and
differences between them, and in some cases they are treated as equivalent. Nevertheless, there
are at least two important differences that distinguish them. First, while the covariance matrix
of a factor GARCH model is measurable by construction with respect to an information set that
contains only past values of the observed variables, this is not the case for Diebold and Nerlove’s
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original model, which in fact can be regarded as a stochastic volatility model (see, for example,
Andersen 1992, Shephard 1996). A second, less well-known distinctive feature, is that the implicit
definition of the factors is significantly different between the two. While in Diebold and Nerlove’s
model the factors capture the co-movements between the observed series, in Engle’s model they
are directly related to those linear combinations of the series which summarize the co-movements
in their conditional variances. The purpose of this paper is to make clear their similarities and
differences by providing a formal nesting of the two models. This is important for at least two
reasons. First, while many properties of these models have already been studied in detail, it is
not always entirely clear whether they are specific to the model analysed, or apply to a broader
class. Second, as we shall see, in some cases of substantive interest the interpretation of the
empirical results may be sensitive to the specific nature of the model used. The rest of the paper
is organized as follows. We define the general class of conditionally heteroskedastic models in
Section 2, and discuss some of their properties. Then in Section 3, we introduce the factor ARCH
model, summarize its main properties, and present our main result. Finally, Section 4 contains a
discussion of our results in relation to empirical tests of multi-beta asset-pricing theories. Two
auxiliary lemmas are included in the appendix.

2. CONDITIONALLY HETEROSKEDASTIC FACTOR MODELS

Consider the following multivariate model:

xt = C ft + wt (1)(
ft
wt

)
|It−1 ∼ D

{(
0
0

)
,

(
3t 0
0 0

)}
(2)

wherext is a N × 1 vector of observable random variables,ft is ak × 1 vector of unobserved
common factors,C is theN×k matrix of associated factor loadings, withN ≥ k and rank(C) = k,
wt is a N × 1 vector of idiosyncratic noises, which are conditionally orthogonal toft , 0 is a
N × N positive semidefinite (p.s.d.) matrix of constant idiosyncratic variances,3t is a k × k
positive definite (p.d.) matrix of time-varying factor variances, andIt−1 is an information set
that contains the values ofxt and ft up to, and includingt − 1. Our assumptions imply that the
distribution ofxt conditional onIt−1 has zero mean, and covariance matrix6t = C3tC′+0. For
this reason, we shall refer to the data-generation process specified by (1) and (2) as a multivariate
conditionally heteroskedastic factor model. Such a formulation nests several models widely used
in the empirical literature, which typically assume that the unobserved factors follow dynamic
heteroskedastic processes, but differ in the exact parametrization of3t and0. For instance, in
the latent factor model with ARCH effects on the underlying factors introduced by Diebold and
Nerlove (1989), the conditional variances of the common factors are parametrized as univariate
strongARCH models, in the sense of Drost and Nijman (1993). In particular, for a GARCH(p,q)
formulation,

λ j j t = V( f j t |It−1) = φ j +
q∑

s=1

α js f 2
j t−s+

q∑
r=1

β jr λ j j t−r ( j = 1, . . . , k). (3)

In this context, it is important to distinguish betweenIt−1, which includes past values ofxt

and ft , and the econometrician’s information setXt−1 = {xt−1, xt−2, . . .}, which only includes

c© Royal Economic Society 1998
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lagged values ofxt . Notice that in this case,λ j j t ∈ Ft−1, whereFt−1 = { ft−1, ft−2, . . .}, but
λ j j t /∈ Xt−1, which has important inference implications (see Harveyet al. 1992, Shephard 1996,
and Fiorentiniet al. 1998). Notice also that a significant characteristic of a model like (1)–(3) is
that it is dimension independent, in the sense that it remains valid for any subset ofxt . Another
frequently made assumption is that the common factors represent (conditionally) orthogonal
influences, which implies that3t is diagonal. Otherwise, we say that the factor model is oblique.
Similarly, it is often assumed that0 is diagonal, in which case the factor structure is termed strict
or exact. However, in some applications, diagonality of0 may be thought to be too restrictive.
For instance, it will not be preserved by linear transformations. For that reason Chamberlain
and Rothschild (1983) introduced the concept of approximate factor structures, in which the
idiosyncratic terms may be correlated, but only up to a certain degree. Alternatively, one could
assume that0 has reduced rank. In fact, the rank of0 is related to the observability of the factors.
If rank(0) = N − k, the factors would be fully revealed by thext variables, otherwise they are
only partially revealed (see Kinget al. 1994). A non-trivial advantage of these models is that
they automatically guarantee a p.s.d. covariance matrix forxt once we ensure that the covariance
matrix of the factors is p.s.d. Moreover, using Lemma 1 in the Appendix, it is straightforward to
derive necessary and sufficient conditions that guarantee that6t is actually p.d. even when0 is of
reduced rank. But the most distinctive feature of factor models is that they provide a parsimonious
specification of the dynamic and cross-sectional dependence of a vector of observable random
variables. In this case in particular, the factor structure, together with the constancy of0, implies
that the time variation of6t is of reduced rank (see Engleet al. 1990). More formally, ifË
denotes aN× (N−k)matrix of full column rank such thaẗE′C = 0, andĒ = (Ė, Ë) is aN×N
matrix of full rank, with Ė arbitrary, then, the only time-varying component in the covariance
matrix of x̄′t = x′t Ē = (x′t Ė, x′t Ë) = (ẋ′t , ẍ′t ) is the covariance matrix oḟxt . In this respect,
Gouriérouxet al. (1991) provide a particularly attractive choice ofĒ, which makesẋt and ẍt

orthogonal, and allows us to express any conditionally heteroskedastic factor model as an oblique
factor model with time-varying conditional variances, and a singular idiosyncratic covariance
matrix. In particular, if we assume for simplicity that0 is non-singular, we can write:

xt = C f G
t + wG

t (4)(
f G
t
wG

t

)
|It−1 ∼ D

{(
0
0

)
,

(
3t + (C′0−1C)−1 0

0 0 − C(C′0−1C)−1C′
)}

where
f G
t = (C′0−1C)−1C′0−1xt = ft + (C′0−1C)−1C′0−1wt (5)

are the generalized least squares (GLS) estimates of the common factors andwG
t = {I −

C(C′0−1C)−1C′0−1}xt . Notice that when3t is diagonal, the elements off G
t are contempora-

neously correlated, unless(C′0−1C) is itself diagonal, but with constant conditional covariances.
Also note that if3t is given by a strong GARCH model such as (3), the results in Nijman and
Sentana (1996) imply that these factor scores will follow weak GARCH processes. Finally, notice
that if ft is conditionally homoskedastic, the model in (1), (2) reduces to the standard (i.e. static)
factor-analysis model (see, for example, Lawley and Maxwell 1971). But even ifft is condition-
ally heteroskedastic, provided that it is covariance stationary, it also implies an unconditionalk
factor structure forxt . That is, the unconditional covariance matrix,6, can be written as:

6 = C3C′ + 0 (6)
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4 Enrique Sentana

whereV( ft ) = E(3t ) = 3. This property makes the models considered here compatible with
traditional factor analysis.

3. FACTOR GARCH MODELS AS CONDITIONALLY HETEROSKEDASTIC
FACTOR MODELS

The factor GARCH model was originally introduced as a parsimonious special case of the mul-
tivariate GARCH(p,q) model considered in Bollerslevet al. (1988):

xt |Xt−1 ∼ D(0, 6t )

vech(6t ) = 8+
q∑

s=1

As vech(xt−sx′t−s)+
q∑

r=1

Br vech(6t−r )

whereAs andBr are square matrices of orderm(m+ 1)/2, and8 is a vector of the same order.
In fact, it could be regarded as a prototype of the positive definite BEEK parametrization in Engle
and Kroner (1995), which is the most general covariance specification proposed so far within this
class (see Kroner 1987, Lin 1992). Formally, Engle’s (1987)k factor GARCH(p,q) model is
characterized by the following conditional covariance matrix specification:

6t = 9 +
k∑

j=1

cj c
′
j

{ q∑
s=1

α js(d
′
j xt−s)

2+
p∑

r=1

β jr (d
′
j6t−r dj )

}

= 9 +
k∑

j=1

cj c
′
j {α j (L)(d

′
j xt )

2+ β j (L)(d
′
j6t dj )} (7)

where9 is a N × N symmetric p.s.d. matrix of rankN1 ≤ N, C = (c1, . . . , ck) and D =
(d1, . . . ,dk) are N × k full column rank coefficient matrices satisfyingD′C = Ik, with each
columndj (or cj ) normalized to avoid scale indeterminacy, andα j (L) =∑q

s=1 α jsLs, β j (L) =∑p
r=1 β jr Lr are polynomials in the lag operator, with the roots of 1−β j (L) outside the unit circle.

The name factor GARCH stems from the fact that the time variation in the conditional variance can
be summarized byk linear combinations ofxt which are univariate strong GARCH. In this respect,
it can be regarded as the conditional variance counterpart to reduced rank vector autoregressive
models. These linear combinations,d′j xt , referred to as ‘factor representing portfolios’ by Nget
al. (1992), are univariate strong GARCH(p,q) processes with conditional variance

δ j j t = ϑ j j +
q∑

s=1

α js(d
′
j xt−s)

2+
p∑

r=1

β jr δ j j t−r = ϑ j j

1− β j (1)
+ α j (L)

1− β j (L)
(d′j xt )

2

whereϑ j j = d′j9dj . Note, however, that in general covt−1(d′i xt ,d′j xt ) = d′i9dj = ϑi j 6= 0 for
i 6= j , so that the constant part ofVt−1(D′xt ) is not usually diagonal (see Lin 1992). In order
to guarantee thatδ j j t ≥ 0 ∀t , it is often assumed thatϑ j j ≥ 0 and the coefficients in the power
expansion ofα j (L)/{1− β j (L)} are non-negative (see Nelson and Cao 1992, Drost and Nijman
1993). In practice, it is also convenient to rule out cases in whichdj is in the nullspace of9, i.e.
ϑ j j = 0, since otherwiseδ j j t , and indeedd′j xt , will converge to zero with probability 1 (cf. Nelson
1990). Given that the only restriction on9 is positive semi-definiteness, it is not surprising that
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The relation between conditionally heteroskedastic factor models and factor GARCH models5

the factor GARCH structure (7) is preserved under full-rank linear transformations ofxt (see Lin
1992). However, these models are not generally closed with respect to (block) marginalization.
More formally, if we callX1t−1 an information set that only contains the past values of a subvector
of xt , in most casesδ j j t /∈ X1t−1, so that the relevant block of6t becomes non-measurable with
respect to the smaller information set (see the discussion after expression (3)). In this respect,
Nijman and Sentana (1996) derive the weak GARCH representations of the individual components
of xt for the bivariate case. Bollerslev and Engle (1993) show thatxt is covariance stationary if
and only ifα j (1) + β j (1) < 1 ∀ j . In that case, its unconditional covariance matrix is given by
the following expression:

6 = 9 +
k∑

j=1

cj c
′
jϑ j j

α j (1)+ β j (1)

1− α j (1)− β j (1)
.

For our purposes, it is more convenient to write6t as

6t = 9 −
k∑

j=1

cj c
′
jϑ j j +

k∑
j=1

cj c
′
j δ j j t = 9 +

k∑
j=1

cj c
′
j

{
ϑ j j β j (1)

1− β j (1)
+ α j (L)

1− β j (L)
(d′j xt )

2
}

or in matrix form
6t = 9 + C{5+3t (0)}C′ = 9̄ + C3t (0)C

′ (8)

where

3t (0) = diag

{
α1(L)

1− β1(L)
(d′1xt )

2, . . . ,
αk(L)

1− βk(L)
(d′kxt )

2
}

5 = diag

{
ϑ11β1(1)

1− β1(1)
, . . . ,

ϑkkβk(1)

1− βk(1)

}
and9̄ = 9 + C5C′. Equation (8) clearly suggests that Engle’s model must be related to the
conditionally heteroskedastic factor model in (1), (2). In fact, as the following proposition shows,
the factor GARCH model is observationally equivalent to a whole family of oblique factor models
with constant conditional covariances, whose limiting cases are an orthogonal factor model in
which the variances of the factors are given by3t (0), and an oblique factor model like (4) with
a singular idiosyncratic covariance matrix:

Proposition 1.Assume that6t is p.d., and furthermore that̄9 has full rank. Let� be any k× k
p.s.d. matrix such that the eigenvalues of�C′9̄−1C are less than or equal to1. Then, the k factor
GARCH(p,q)model in (7) is observationally equivalent (up to conditional second moments) to
any of the following conditionally heteroskedastic factor models:

xt = C ft (�)+ wt (�)

where

Vt−1{ ft (�)} = 3t (�) = �+3t (0)

Vt−1{wt (�)} = 0(�) = 9̄ − C�C′

covt−1{ ft (�),wt (�)} = 0.
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6 Enrique Sentana

Proof. SinceVt−1(xt ) = 0(�) + C3t (�)C′ = 9̄ + C3t (0)C′ = 6t , we only need to check
that0(�) and3t (�) are p.s.d. Given that̄9 is p.d., the restrictions on� guarantee that0(�)
is p.s.d. in view of Lemma 2. Similarly, sinceδ j j t ≥ ϑ j j /[1 − β j (1)] ∀t , λ j j t (�) ≥ λ j j t (0) =
δ j j t − ϑ j j /[1− β j (1)] ≥ 0. 2

It is also straightforward to check that the GLS factor representing portfolios of the above mod-
els, f G

t (�) = {C′0−1(�)C}−1C′0−1(�)xt do not depend on�, and coincide with
ft {(C′9̄−1C)−1} = (C′9̄−1C)−1C′9̄−1xt . In this respect, it is worth noting that the ‘largest’�
compatible with0(�) p.s.d. is precisely(C′9̄−1C)−1. Therefore, if we call(C′9̄−1C) j j the
j th diagonal element of(C′9̄−1C)−1, λ j j t (�) ≤ λ j j t {(C′9̄−1C)−1} = δ j j t + (C′9̄−1C) j j −
d′j 9̄dj ≤ δ j j t by the Cauchy–Schwartz inequality, with equality if and only if

D′ = (C′9̄−1C)−1C′9̄−1. Except in this unlikely case,̄9 ∗ D′9̄D is an indefinite matrix,
and we cannot interpretD′xt as common factors. As a result,ft (�) will generally follow weak,
rather than strong, GARCH processes, sinceD′xt 6= ft (�) for all admissible�. In any case, we
can replace the infinite distributed lags in3t (�) by the recursions

λ j j t (�) = {1− β j (1)}ω j j + α j (L)(d
′
j xt )

2+ β j (L)λ j j t (�).

Finally, note that rank(9̄) = N is very slightly stronger than required, as it only excludes those
cases in which rank(U ′2C51/2) < N−N1 but rank(U ′2C) = rank[U ′2C{5+3t (0)}1/2] = N−N1,
where the columns ofU2 constitute a basis of the nullspace of9. Nevertheless, Proposition 1
can be tediously extended on the basis of Lemma 2b in the Appendix to those cases in which6t

is p.d. but9̄ is not, at the cost of making the range of admissible�’s depend onk and the rank
of 9̄. For instance, ifk = 1, � can be any non-negative scalar such that�C′9̄−1C ≤ 1 if
rank(9̄) = N, and 0 if rank(9̄) = N − 1.

4. SUMMARY AND DISCUSSION

In this paper, we discuss the relation between Engle’s (1987) factor GARCH model, and a
general class of conditionally heteroskedastic factor models, which includes the latent factor
ARCH model of Diebold and Nerlove (1989) as a special case. We formally introduce both
models, discuss some of their properties, and provide a precise nesting of the two. Such a nesting
can be fruitfully exploited to analyse the statistical features of the factor GARCH model in the
more general context of model (1), (2). For example, Demos and Sentana (1998) exploit this
relationship to adapt the EM algorithm to this class of models, while Sentana and Fiorentini
(1997) analyse the identifiability of the factor loadings matrixC within a unified framework.
Similarly, it can also be employed to extend some of the inference procedures developed for
the factor GARCH model to the general class of models in (1), (2). This would be the case,
for instance, of the common features test in Engle and Kozicki (1993), under our maintained
assumption of constant idiosyncratic variances. Nevertheless, one should always remain aware
of their differences, especially in empirical applications. For instance, an implication of our main
result is that if we interpret the factor GARCH model as a traditional factor model in which
the variances of the factors change over time, we would not generally be able to separately
identify the contributions to the unconditional covariance matrix of the idiosyncratic terms and
common factors, as we can transfer variance between them (see Sentana and Fiorentini 1997).
This problem is particularly relevant in testing some of the implications of multi-beta asset-pricing
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theories, such as the integration of financial markets (see Kinget al. 1994). Similarly, even if
we avoid the aforementioned observational equivalence, we will not be able to differentiate the
contribution to the covariance matrix of conditionally homoskedastic common factors (see Engle
et al. 1990). For instance, if for identification purposes we go to the extreme, and choose the
parameters so that the idiosyncratic covariance matrix has rankN − k, then model (7) can also
be written as a model withN common factors and no idiosyncratic noise, in which the firstk
factors have time-varying variances but constant covariances, and the remainingN − k factors
are conditionally homoskedastic, as well as orthogonal to each other and to the firstk ones.
Obviously, the corresponding asset-pricing implications are rather different.
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APPENDIX

The following lemmas are useful to derive the relationship between thek factor GARCH in (7), and condi-
tionally heteroskedastic factor models in (1), (2).

Lemma 1. Let Z be a N× k matrix ofrankk,� a k× k p.s.d. matrix withrankk1 ≤ k, and9 a N × N
p.s.d. matrix withrankN1 ≤ N, where the spectral decompositions of� and9 are given by

� = V8V ′ = (V1 V2 )

(
81

0

)(
V ′1
V ′2

)
= V181V ′1

9 = U1U ′ = (U1 U2 )

(
11

0

)(
U ′1
U ′2

)
= (U11

1/2
1 U2

) ( IN1
0

)(
1

1/2
1 U ′1
U ′2

)
= Ũ1̃Ũ ′

with 81,11 > 0, rank(81) = k1 and rank(11) = N1, so that9+ = U11
−1
1 U ′1 is the Moore–Penrose

inverse of9. (a) If rank(9) = N, then rank(9 + Z�Z′) = rank(9). (b) If rank(9) < N, then
rank(9 + Z�Z′) = rank(9)+ rank(U ′2ZV1)

Proof. We only prove (b), as (a) is trivial. Given thatU is orthogonal, we can write

9 + Z�Z′ = U (1+U ′ZV181V ′1Z′U )U ′ = UϒU ′

with

ϒ =
(
ϒ11 ϒ12
ϒ ′12 ϒ22

)
=
(
11+U ′1ZV181V ′1Z′U1 U ′1ZV181V ′1Z′U2

U ′2ZV181V ′1Z′U1 U ′2ZV181V ′1Z′U2

)
so that rank(9 + Z�Z′) = rank(ϒ). But since rank(ϒ11) = N1, ϒ has the same rank as(

IN1 0
−ϒ ′12ϒ

−1
11 IN−N1

)
ϒ

(
IN1 −ϒ−1

11 ϒ12
0 IN−N1

)
=
(
ϒ11 0

0 ϒ22− ϒ ′12ϒ
−1
11 ϒ12

)
.
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8 Enrique Sentana

Hence, rank(ϒ) = rank(ϒ11)+ rank(ϒ22−ϒ ′12ϒ
−1
11 ϒ12). Finally, repeated application of the Woodbury

formula forϒ11 (see e.g. Householder 1964) gives after some simplification

ϒ22− ϒ ′12ϒ
−1
11 ϒ12 = U ′2ZV1(8

−1
1 + V ′1Z′9+ZV1)

−1V ′1Z′U2.

2

As a simple example, consider the case of rank(9) < N andk = 1, so thatV1 = 1 if � 6= 0. Then
rank(9 + Z�Z′) = rank(9)+ 1 unlessU ′2Z = 0, in which caseZ is in the column space ofU1.

Lemma 2. Let Z,� and9 be defined as in Lemma 1. a) Ifrank(9) = N, then9 − Z�Z′ remains p.s.d.
if and only if the eigenvalues of�(Z′9−1Z) are all less than or equal to1. b) If rank(9) < N, then
9 − Z�Z′ remains p.s.d. if and only if U′2ZV1 = 0 and the eigenvalues of�(Z′9+Z) are all less than or
equal to1.

Proof. We only prove (b), as (a) is proved along similar lines. SinceŨ has full rank, we can always write

9 − Z�Z′ = Ũ (1̃− Ũ−1Z�Z′Ũ ′−1)Ũ ′ = Ũ ϒ̃Ũ ′.

Therefore, the definiteness of9 − Z�Z′ is the same as the definiteness ofϒ̃ . In this case,̃ϒ is(
IN1 −1−1/2

1 U ′1ZV181V ′1Z′U11
−1/2
1 −1−1/2

1 U ′1ZV181V ′1Z′U2

U ′2ZV181V ′1Z′U11
−1/2
1 −U ′2ZV181V ′1Z′U2

)

which is p.s.d. if and only ifU ′2ZV1 = 0 and IN1 − 1−1/2
1 U ′1ZV181V ′1Z′U11

−1/2
1 is p.s.d. But this

matrix hasN1 − k1 unit eigenvalues, plus anotherk1 eigenvalues which are 1 minus the eigenvalues of

�Z′U11
−1/2
1 1

−1/2
1 U ′1Z = �Z′9+Z 2
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