Outline

- DCC models
- Factor MIDAS model
- Data/Estimation/Results

Conditional Correlation (CC) models

• General Setup

-
$$r_t | \mathcal{F}_{t-1} \sim N(0, H_t); H_t = D_t R_t D_t = \{ \rho_{ij} \sqrt{h_{iit} h_{jjt}} \}$$

- $D_t = diag(h_{11t}^{1/2} ... h_{NNt}^{1/2})$

- h_{iit} can be defined as any univariate GARCH model
- $R_t = \{\rho_{ij,t}\}$ symmetric p.d. matrix with $\rho_{ii} = 1$. H_t is p.d. if R_t is p.d.
- Constant CC Bollerslev (1990). $R_t = R$ is a constant matrix (the assumption is not very realistic for many many applications).
- Christodoulakis and Satchell (2002). Bivariate dynamic conditional correlation model. To ensure p.d. R_t , Fisher transformation $\rho_{12,t} = (e^{2v_t} 1)/(e^{2v_t} + 1)$, where $v_t = \epsilon_{1t}\epsilon_{2t}/\sqrt{h_{11t}h_{22t}}$. R_t is p.d. by construction.

Tse and Tsui (2002) DCC model

$$R_{t} = (1 - \theta_{1} - \theta_{2})R + \theta_{1}\Psi_{t-1} + \theta_{2}R_{t-1}$$

 θ_1 and θ_2 are non-negative parameters and $\theta_1 + \theta_2 < 1$, R is a symmetric $N \times N$ p.d. matrix with $\rho_{ii} = 1$, and Ψ_{t-1} is the $N \times N$ correlation matrix of rolling-window "realized correlation", i.e.

$$\psi_{ij,t-1} = \frac{\sum_{m=1}^{M} u_{i,t-m} u_{j,t-m}}{\sqrt{(\sum_{m=1}^{M} u_{i,t-m}^2)(\sum_{m=1}^{M} u_{j,t-m}^2)}}$$

where $u_{it} = \epsilon_{it}/\sqrt{h_{iit}}$. M > N is the necessary condition for Ψ_{t-1} to be p. d. and therefore $R_t - p.d$. The test for CCC will be $\theta_1 = \theta_2 = 0$.

Engle (2002) DCC

$$R_t = (diag(Q_t))^{-1/2} Q_t (diag(Q_t))^{-1/2}$$

where the $N \times N$ symmetric pd matrix Q_t is given by

$$Q_{t} = (1 - \alpha - \beta)\bar{Q} + \alpha u_{t-1}u_{t-1}' + \beta Q_{t-1}$$

with $u_{it} = \epsilon_{it}/\sqrt{h_{iit}}$, \bar{Q} is the $N \times N$ unconditional variance matrix of u_t and $\alpha, \beta \geq 0$ are scalar parameters with $\alpha + \beta < 1$. The elements of \bar{Q} can be estimated or set to their sample counterpart which will make the estimation even simpler.

- The difference between the two DCC models
 - * Tse and Tsui (2002)

$$\rho_{ij,t} = (1 - \theta_1 - \theta_2)\rho_{ij,t-1} + \theta_2\rho_{ij,t-1} + \theta_1 \frac{\sum_{m=1}^M u_{i,t-m} u_{j,t-m}}{\sqrt{(\sum_{m=1}^M u_{i,t-m}^2)(\sum_{m=1}^M u_{j,t-m}^2)}}$$

* Engle (2002)

$$\rho_{ij,t} = \frac{(1 - \alpha - \beta)\bar{q}_{ij} + \alpha u_{i,t-1} + \beta q_{ij,t-1}}{\sqrt{\left((1 - \alpha - \beta)\bar{q}_{ii} + \alpha u_{i,t-1}^2 + \beta q_{ii,t-1}\right)\left((1 - \alpha - \beta)\bar{q}_{jj} + \alpha u_{j,t-1}^2 + \beta q_{jj,t-1}\right)}}$$

General dynamic covariance model, Kroner and Ng (1998)

$$H_t = D_t R_t D_t + \Phi \odot \Theta_t$$

where \odot - Hadamard product,

 $\begin{array}{l} D_t = diag(\sqrt{\theta_{ii,t}})\\ \Theta_t = (\theta_{ij,t})\\ R_t \text{ is specified as Engle or Tsui correlation matrix,}\\ \Phi = (\phi_{ij}), \ \phi_{ii} = 0 \quad \forall i, \ \phi_{ij} = \phi_{ji}\\ \theta_{ij,t} = \omega_{ij} + a'_i \epsilon_{t-1} \epsilon'_{t-1} a_j + g'_i H_{t-1} g_j \quad \forall i, j\\ a_i, g_i, \quad i = 1, ..., N \text{ are } N \times 1 \text{ vectors of parameters, and } \Omega = (\omega_{ij}) \text{ is positive definite and symmetric.} \end{array}$

Element by element

$$h_{ii,t} = \theta_{ii,t} \quad \forall i$$
$$h_{ij,t} = \rho_{ij,t} \sqrt{\theta_{ii,t} \theta_{jj,t}} + \phi_{ij} \theta_{ij,t}$$

This model can be reduced to Engle or Tse Tsui DCC model if the following restrictions are imposed:

– $\Phi = 0$

 $-a_i = \alpha_i l_i, \ g_i = \beta_i l_i, \quad \forall i$, where l_i is the i^{th} column of an $N \times N$ identity matrix., and α_i and β_i , i = 1, ..., N are scalars.

Summary

The advantages of the dynamic correlation models are

- Easiness of estimation.
- Has small number of parameters O(k) (analysis of large covariance matrices)
- The 2-step procedure produces consistent results.

Therefore they can be used in the large-scale estimation. However, the DCC assumption that the whole correlation matrix is driven by a small number of parameters is not reasonable one for the purposes of the large-scale estimation.

Diagonal Factor MIDAS model

$$r_{t+h,t} | \mathcal{F}_{t-1} \sim N(0, H_{t+h,t})$$
$$r_{t+h,t} = \Lambda f_{t+h,t} + \epsilon_{t+h,t}$$
$$H_{t+h,t} = \Lambda F_{t+h,t} \Lambda' + \Sigma$$

 $r_{t+h,t} - n \times 1$ vector of asset returns $f_{t+h,t} - m \times 1$ vector of orthogonal factors measurable w.r.t. \mathcal{F}_{t+h} , m < n $\Sigma - n \times n$ diagonal matrix of the idiosyncratic noise covariance $\Lambda - n \times m$ factor loading matrix $F_{t+h,t}$ - diagonal matrix of conditional factor covariance

Diagonal Factor MIDAS model (cont.)

$$\{F_{t+h,t}\}_{kk}|\mathcal{F}_t = \mu_k^h + \phi_k^h \sum_{j=1}^{j_{max}} b(j,\theta_k^h)\{F_{t-j+1,t-j}\}_{kk}$$

where $\{F_{t-j+1,t-j}\}_{kk}$ — one period realized volatility of the k^{th} factor. $\{F_{t-j+1,t-j}\}_k = \sum_{s=1}^l f_{kt-j+s/l}^2$ Factor Construction:

$$f_{kt+j/l} = w'_k r_{t+j/l}$$

The first factor is the "market", i.e. $w_1 = \iota/n$. All others are constructed using factor analysis from the residuals of the linear projection of individual stocks on the first factor.

Asymmetric specification

$$\{F_{t+h,t}^{asy}\}_{k} = \left[\mu_{k}^{h+} + \phi_{k}^{h+} \sum_{j=1}^{j_{max}} b(j,\theta_{k}^{+})Q_{kt-j+1,t-j}\right] I_{\{f_{1t,t-1}>0\}} + \left[\mu_{k}^{h-} + \phi_{k}^{h-} \sum_{j=1}^{j_{max}} b(j,\theta_{k}^{-})Q_{kt-j+1,t-j}\right] I_{\{f_{1t,t-1}\leq 0\}}$$

where $I_{\{f_{1t,t-1} \leq 0\}}$ is an indicator function, and

$$I_{\{f_{1t,t-1} \le 0\}} + I_{\{f_{1t,t-1} > 0\}} \equiv 1$$

Figure 1: MIDAS weights of the estimated factor volatility. w^+ corresponds to conditioning on the positive market returns, w^- corresponds to conditioning on the negative.

Advantages of the Factor MIDAS model

- Has small number of parameters O(k)
- Number of lags can be increased at no cost
- Uses information available in high-frequency data
- Uses realized volatility as a measure of variance instead of squared returns
- The 2-step procedure produces consistent results.

Estimation and Testing

- Estimation
 - 1. Construct high-frequency factors
 - 2. Construct daily realized volatility of the factors
 - 3. Estimate the variance of the factors by univariate MIDAS and construct the variance-covariance matrix
- Estimate Diagonal Factor MIDAS models for
 - Symmetric and Asymmetric specification
 - Number of factors 1, 2, 3
 - Number of stocks 5, 10, 15, 22

- Evaluate performance using three portfolios
 - Testing standardized portfolio returns
 - Constructing HIT auxiliary regression
 - Comparing with DCC model

The considered portfolios are:

1. Minimum Variance portfolio: $w_{t+h,t}^{(1)} = \frac{\hat{H}_{t+h,t}^{-1}}{\iota'\hat{H}_{t+h,t}^{-1}\iota}$ 2. Value Weighed portfolio: $w_{t+h,t}^{(2)} = \frac{w_{t,t-h}\odot(1+r_{t+h,t})}{w'_{t,t-h}(1+r_{t+h,t})}$ 3. Equally Weighted portfolio: $w_{t+h,h}^{(3)} = \iota/n$

Performance Evaluation. Standardized Residuals

• Under H_0 (correctly specified conditional variance-covariance matrix),

$$\begin{split} \left(\lfloor T/h \rfloor - 1\right) \hat{s_l}^2 &= \sum_{t=0}^{\lfloor T/h \rfloor} \frac{\left(r'_{(t+1)h,th} w_{(t+1)h,th}^l\right)^2}{s_{(t+1)h,th}^2} \sim \chi^2 (\lfloor T/h \rfloor - 1), \\ \text{where } s_{lt+h,t}^2 &= (w_{t+h,t}^l)' H_{t+h,t} w_{t+h,t}^l - \text{estimated conditional variance of the} \\ \text{portfolios } l &= \{1,2,3\}. \end{split}$$

• Accept H_0 with $\alpha = .05$ if

$$\frac{\chi^2_{\alpha/2}}{(\lfloor T/h \rfloor - 1)} (\lfloor T/h \rfloor - 1) < \hat{s}^2 < \frac{\chi^2_{1-\alpha/2}(\lfloor T/h \rfloor - 1)}{(\lfloor T/h \rfloor - 1)}$$

Results

Standard deviations of the different portfolios (minimum variance, value weighted and equally weighted) using 5 and 22 stocks and five day interval.

Model	Factors	MinVar	Value	Equal	MinVar	Value	Equal
		F	ive stocks			Twenty-t	wo stocks
DCC	_	1.046	0.975	0.963	1.170^{*}	0.877^{*}	0.981
asym	1	1.020	0.960	0.992	1.123	0.899	1.014
sym	1	1.010	0.963	0.986	1.247^*	0.830^*	1.024
asym	2	1.025	0.967	1.011	1.071	0.945	1.002
sym	2	1.022	0.963	1.003	1.066	0.955	1.005
asym	3	0.992	0.955	0.973	1.032	0.948	1.000
sym	3	1.008	0.962	0.994	1.045	0.940	0.985

Performance Evaluation. Conditional Autoregressive Value-at-Risk, Engle and Manganelli (2000)

- Portfolio's l return in period $\{t+h,t\}$ is $R_{t+h,t}^{l} = w_{t+h,t}^{l} r_{t+h,t}$
- Define a binary variable $HIT_{t+h,t}^{l} = I_{\{R_{t+h,t}^{l} < VaR(q)\}}$, q quantile of interest.
- Under the null of correct specification and known q, $E(HIT_{t+h,t}^{l}|\mathcal{F}_{t-1}) = q$
- H_{00} : $\delta_i = 0, \forall i$ in

$$HIT_{t+h,t} - q = \delta_0 + \sum_{i=1}^r \delta_i HIT_{t-(i-1)h,t-ih} + \delta_{r+1} VaR_{t+h,t} + \nu_t$$

Performance Evaluation. Conditional Autoregressive Value-at-Risk, Engle and Manganelli (2000) (cont)

- Under the null of correct specification and unknown q,
- H_0 : $\delta_i = 0, \forall i > 0$ in

$$HIT_{t+h,t} - q = \delta_0 + \sum_{i=1}^r \delta_i HIT_{t-(i-1)h,t-ih} + \delta_{r+1} VaR_{t+h,t} + \nu_t$$

• Example: If $R_{t+h,t}^l$ is normal, and q = .05

$$VaR_{t+h,t}(.05) = -1.65\hat{\sigma}_{t+h,t}$$

HIT regression results for the 5% quantile of the minimum variance and equally weighted portfolios using 5 and 22 DJ assets. Symmetric and asymmetric models.

	5 days horizon				10 days horizon			
	Min. Variance		Equally weighted		Min. Variance		Equally weighted	
Model	MIDAS	DCC	MIDAS	DCC	MIDAS	DCC	MIDAS	DCC
$asym_{5,1}$	0.254	0.056	0.334	0.436	0.669	0.285	0.693	0.011
$sym_{5,1}$	0.804	0.056	0.174	0.436	0.779	0.285	0.012	0.011
$asym_{5,3}$	0.322	0.056	0.223	0.436	0.779	0.285	0.074	0.011
$sym_{5,3}$	0.248	0.156	0.024	0.436	0.501	0.285	0.052	0.011
$asym_{22,1}$	0.081	0.004	0.680	0.015	0.072	0.000	0.071	0.000
$sym_{22,1}$	0.052	0.004	0.234	0.015	0.669	0.000	0.038	0.000
$asym_{22,3}$	0.164	0.004	0.130	0.015	0.532	0.000	0.051	0.000
$sym_{22,3}$	0.531	0.004	0.998	0.015	0.084	0.000	0.367	0.000