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Conditional Correlation (CC) models
• General Setup

– rt|Ft−1 ∼ N(0,Ht); Ht = DtRtDt = {ρij

√
hiithjjt}

– Dt = diag(h1/2
11t ...h

1/2
NNt)

– hiit can be defined as any univariate GARCH model

– Rt = {ρij,t} – symmetric p.d. matrix with ρii = 1. Ht is p.d. if Rt is p.d.

• Constant CC Bollerslev (1990). Rt = R is a constant matrix (the assumption

is not very realistic for many many applications).

• Christodoulakis and Satchell (2002). Bivariate dynamic conditional correlation

model. To ensure p.d. Rt, Fisher transformation ρ12,t = (e2vt − 1)/(e2vt + 1),
where vt = ε1tε2t/

√
h11th22t. Rt is p.d. by construction.
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Tse and Tsui (2002) DCC model
–

Rt = (1− θ1 − θ2)R + θ1Ψt−1 + θ2Rt−1

θ1 and θ2 are non-negative parameters and θ1 + θ2 < 1, R is a symmetric

N ×N p.d. matrix with ρii = 1, and Ψt−1 is the N ×N correlation matrix of

rolling-window ”realized correlation”, i.e.

ψij,t−1 =
∑M

m=1 ui,t−muj,t−m√
(
∑M

m=1 u2
i,t−m)(

∑M
m=1 u2

j,t−m)

where uit = εit/
√

hiit. M > N is the necessary condition for Ψt−1 to be p. d.

and therefore Rt – p.d. The test for CCC will be θ1 = θ2 = 0.
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Engle (2002) DCC

–

Rt = (diag(Qt))−1/2Qt(diag(Qt))−1/2

where the N ×N symmetric pd matrix Qt is given by

Qt = (1− α− β)Q̄ + αut−1u
′
t−1 + βQt−1

with uit = εit/
√

hiit, Q̄ is the N ×N unconditional variance matrix of ut and

α, β ≥ 0 are scalar parameters with α + β < 1. The elements of Q̄ can be

estimated or set to their sample counterpart which will make the estimation

even simpler.
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– The difference between the two DCC models

∗ Tse and Tsui (2002)

ρij,t = (1− θ1 − θ2)ρij,t−1 + θ2ρij,t−1 + θ1

∑M
m=1 ui,t−muj,t−m√

(
∑M

m=1 u2
i,t−m)(

∑M
m=1 u2

j,t−m)

∗ Engle (2002)

ρij,t = (1−α−β)q̄ij+αui,t−1uj,t−1+βqij,t−1r�
(1−α−β)q̄ii+αu2

i,t−1+βqii,t−1

��
(1−α−β)q̄jj+αu2

j,t−1+βqjj,t−1

�
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General dynamic covariance model, Kroner and Ng (1998)

Ht = DtRtDt + Φ¯Θt

where ¯ - Hadamard product,

Dt = diag(
√

θii,t)

Θt = (θij,t)
Rt is specified as Engle or Tsui correlation matrix,

Φ = (φij), φii = 0 ∀i, φij = φji

θij,t = ωij + a′iεt−1ε
′
t−1aj + g′iHt−1gj ∀i, j

ai, gi, i = 1, ..., N are N × 1 vectors of parameters, and Ω = (ωij) is positive

definite and symmetric.
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Element by element

hii,t = θii,t ∀i
hij,t = ρij,t

√
θii,tθjj,t + φijθij,t

This model can be reduced to Engle or Tse Tsui DCC model if the following

restrictions are imposed:

– Φ = 0
– ai = αili, gi = βili, ∀i, where li is the ith column of an N × N identity

matrix., and αi and βi, i = 1, ..., N are scalars.
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Summary

The advantages of the dynamic correlation models are

• Easiness of estimation.

• Has small number of parameters O(k) (analysis of large covariance matrices)

• The 2-step procedure produces consistent results.

Therefore they can be used in the large-scale estimation. However, the DCC

assumption that the whole correlation matrix is driven by a small number of

parameters is not reasonable one for the purposes of the large-scale estimation.
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Diagonal Factor MIDAS model

rt+h,t|Ft−1 ∼ N(0,Ht+h,t)

rt+h,t = Λft+h,t + εt+h,t

Ht+h,t = ΛFt+h,tΛ′ + Σ

rt+h,t — n× 1 vector of asset returns

ft+h,t — m× 1 vector of orthogonal factors measurable w.r.t. Ft+h, m < n

Σ — n× n diagonal matrix of the idiosyncratic noise covariance

Λ — n×m factor loading matrix

Ft+h,t — diagonal matrix of conditional factor covariance
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Diagonal Factor MIDAS model (cont.)

{Ft+h,t}kk|Ft = µh
k + φh

k

jmax∑

j=1

b(j, θh
k){Ft−j+1,t−j}kk

where {Ft−j+1,t−j}kk — one period realized volatility of the kth factor.

{Ft−j+1,t−j}k =
∑l

s=1 f2
kt−j+s/l Factor Construction:

fkt+j/l = w′krt+j/l

The first factor is the ”market”, i.e. w1 = ι/n. All others are constructed using

factor analysis from the residuals of the linear projection of individual stocks on

the first factor.
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Asymmetric specification

{F asy
t+h,t}k =


µh+

k + φh+
k

jmax∑

j=1

b(j, θ+
k )Qkt−j+1,t−j


 I{f1t,t−1>0} +


µh−

k + φh−
k

jmax∑

j=1

b(j, θ−k )Qkt−j+1,t−j


 I{f1t,t−1≤0}

where I{f1t,t−1≤0} is an indicator function, and

I{f1t,t−1≤0} + I{f1t,t−1>0} ≡ 1
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Figure 1: MIDAS weights of the estimated factor volatility. w+ corresponds to

conditioning on the positive market returns, w− corresponds to conditioning on

the negative.



DCC and MIDAS Factor models [13]

Advantages of the Factor MIDAS model

• Has small number of parameters O(k)

• Number of lags can be increased at no cost

• Uses information available in high-frequency data

• Uses realized volatility as a measure of variance instead of squared returns

• The 2-step procedure produces consistent results.
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Estimation and Testing

• Estimation

1. Construct high-frequency factors

2. Construct daily realized volatility of the factors

3. Estimate the variance of the factors by univariate MIDAS and construct the

variance-covariance matrix

• Estimate Diagonal Factor MIDAS models for

– Symmetric and Asymmetric specification

– Number of factors 1, 2, 3
– Number of stocks 5, 10, 15, 22
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• Evaluate performance using three portfolios

– Testing standardized portfolio returns

– Constructing HIT auxiliary regression

– Comparing with DCC model

The considered portfolios are:

1. Minimum Variance portfolio: w
(1)
t+h,t =

Ĥ−1
t+h,t

ι′Ĥ−1
t+h,t

ι

2. Value Weighed portfolio: w
(2)
t+h,t = wt,t−h¯(1+rt+h,t)

w′
t,t−h

(1+rt+h,t)

3. Equally Weighted portfolio: w
(3)
t+h,h = ι/n
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Performance Evaluation. Standardized Residuals

• Under H0 (correctly specified conditional variance-covariance matrix),

(bT/hc − 1)ŝl
2 =

∑bT/hc
t=0

(r′(t+1)h,thwl
(t+1)h,th)2

s2
(t+1)h,th

∼ χ2(bT/hc − 1),

where s2
lt+h,t = (wl

t+h,t)
′Ht+h,tw

l
t+h,t — estimated conditional variance of the

portfolios l = {1, 2, 3}.

• Accept H0 with α = .05 if

χ2
α/2

(bT/hc−1)(bT/hc − 1) < ŝ2 <
χ2

1−α/2(bT/hc−1)

(bT/hc−1)
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Results
Standard deviations of the different portfolios (minimum variance, value weighted

and equally weighted) using 5 and 22 stocks and five day interval.

Model Factors MinVar Value Equal MinVar Value Equal

Five stocks Twenty-two stocks

DCC – 1.046 0.975 0.963 1.170∗ 0.877∗ 0.981

asym 1 1.020 0.960 0.992 1.123 0.899 1.014

sym 1 1.010 0.963 0.986 1.247∗ 0.830∗ 1.024

asym 2 1.025 0.967 1.011 1.071 0.945 1.002

sym 2 1.022 0.963 1.003 1.066 0.955 1.005

asym 3 0.992 0.955 0.973 1.032 0.948 1.000

sym 3 1.008 0.962 0.994 1.045 0.940 0.985
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Performance Evaluation. Conditional Autoregressive

Value-at-Risk, Engle and Manganelli (2000)
• Portfolio’s l return in period {t + h, t} is

Rl
t+h,t = wl

t+h,t

′
rt+h,t

• Define a binary variable HIT l
t+h,t = I{Rl

t+h,t
<V aR(q)}, q – quantile of interest.

• Under the null of correct specification and known q, E(HIT l
t+h,t|Ft−1) = q

• H00: δi = 0,∀i in

HITt+h,t − q = δ0 +
r∑

i=1

δiHITt−(i−1)h,t−ih + δr+1V aRt+h,t + νt
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Performance Evaluation. Conditional Autoregressive

Value-at-Risk, Engle and Manganelli (2000) (cont)

• Under the null of correct specification and unknown q,

• H0: δi = 0,∀i > 0 in

HITt+h,t − q = δ0 +
r∑

i=1

δiHITt−(i−1)h,t−ih + δr+1V aRt+h,t + νt

• Example: If Rl
t+h,t is normal, and q = .05

V aRt+h,t(.05) = −1.65σ̂t+h,t
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HIT regression results for the 5% quantile of the minimum variance and equally

weighted portfolios using 5 and 22 DJ assets. Symmetric and asymmetric models.

5 days horizon 10 days horizon

Min. Variance Equally weighted Min. Variance Equally weighted

Model MIDAS DCC MIDAS DCC MIDAS DCC MIDAS DCC

asym5,1 0.254 0.056 0.334 0.436 0.669 0.285 0.693 0.011

sym5,1 0.804 0.056 0.174 0.436 0.779 0.285 0.012 0.011

asym5,3 0.322 0.056 0.223 0.436 0.779 0.285 0.074 0.011

sym5,3 0.248 0.156 0.024 0.436 0.501 0.285 0.052 0.011

asym22,1 0.081 0.004 0.680 0.015 0.072 0.000 0.071 0.000

sym22,1 0.052 0.004 0.234 0.015 0.669 0.000 0.038 0.000

asym22,3 0.164 0.004 0.130 0.015 0.532 0.000 0.051 0.000

sym22,3 0.531 0.004 0.998 0.015 0.084 0.000 0.367 0.000




