Outline

- DCC models
- Factor MIDAS model
- Data/Estimation/Results

Conditional Correlation (CC) models

- General Setup
$-r_{t} \mid \mathcal{F}_{t-1} \sim N\left(0, H_{t}\right) ; H_{t}=D_{t} R_{t} D_{t}=\left\{\rho_{i j} \sqrt{h_{i i t} h_{j j t}}\right\}$
- $D_{t}=\operatorname{diag}\left(h_{11 t}^{1 / 2} \ldots h_{N N t}^{1 / 2}\right)$
- $h_{\text {iit }}$ can be defined as any univariate GARCH model
- $R_{t}=\left\{\rho_{i j, t}\right\}$ - symmetric p.d. matrix with $\rho_{i i}=1 . H_{t}$ is p.d. if R_{t} is p.d.
- Constant CC Bollerslev (1990). $R_{t}=R$ is a constant matrix (the assumption is not very realistic for many many applications).
- Christodoulakis and Satchell (2002). Bivariate dynamic conditional correlation model. To ensure p.d. R_{t}, Fisher transformation $\rho_{12, t}=\left(e^{2 v_{t}}-1\right) /\left(e^{2 v_{t}}+1\right)$, where $v_{t}=\epsilon_{1 t} \epsilon_{2 t} / \sqrt{h_{11 t} h_{22 t}} . R_{t}$ is p.d. by construction.

Tse and Tsui (2002) DCC model

$$
R_{t}=\left(1-\theta_{1}-\theta_{2}\right) R+\theta_{1} \Psi_{t-1}+\theta_{2} R_{t-1}
$$

θ_{1} and θ_{2} are non-negative parameters and $\theta_{1}+\theta_{2}<1, R$ is a symmetric $N \times N$ p.d. matrix with $\rho_{i i}=1$, and Ψ_{t-1} is the $N \times N$ correlation matrix of rolling-window " realized correlation", i.e.

$$
\psi_{i j, t-1}=\frac{\sum_{m=1}^{M} u_{i, t-m} u_{j, t-m}}{\sqrt{\left(\sum_{m=1}^{M} u_{i, t-m}^{2}\right)\left(\sum_{m=1}^{M} u_{j, t-m}^{2}\right)}}
$$

where $u_{i t}=\epsilon_{i t} / \sqrt{h_{i i t}} . M>N$ is the necessary condition for Ψ_{t-1} to be p. d. and therefore R_{t}-p.d. The test for CCC will be $\theta_{1}=\theta_{2}=0$.

Engle (2002) DCC

$$
R_{t}=\left(\operatorname{diag}\left(Q_{t}\right)\right)^{-1 / 2} Q_{t}\left(\operatorname{diag}\left(Q_{t}\right)\right)^{-1 / 2}
$$

where the $N \times N$ symmetric pd matrix Q_{t} is given by

$$
Q_{t}=(1-\alpha-\beta) \bar{Q}+\alpha u_{t-1} u_{t-1}^{\prime}+\beta Q_{t-1}
$$

with $u_{i t}=\epsilon_{i t} / \sqrt{h_{i i t}}, \bar{Q}$ is the $N \times N$ unconditional variance matrix of u_{t} and $\alpha, \beta \geq 0$ are scalar parameters with $\alpha+\beta<1$. The elements of \bar{Q} can be estimated or set to their sample counterpart which will make the estimation even simpler.

- The difference between the two DCC models
* Tse and Tsui (2002)

$$
\rho_{i j, t}=\left(1-\theta_{1}-\theta_{2}\right) \rho_{i j, t-1}+\theta_{2} \rho_{i j, t-1}+\theta_{1} \frac{\sum_{m=1}^{M} u_{i, t-m} u_{j, t-m}}{\sqrt{\left(\sum_{m=1}^{M} u_{i, t-m}^{2}\right)\left(\sum_{m=1}^{M} u_{j, t-m}^{2}\right)}}
$$

* Engle (2002)
$\rho_{i j, t}=\frac{(1-\alpha-\beta) \bar{q}_{i j}+\alpha u_{i, t-1} u_{j, t-1}+\beta q_{i j, t-1}}{\sqrt{\left((1-\alpha-\beta) \bar{q}_{i i}+\alpha u_{i, t-1}^{2}+\beta q_{i i, t-1}\right)\left((1-\alpha-\beta) \bar{q}_{j j}+\alpha u_{j, t-1}^{2}+\beta q_{j j, t-1}\right)}}$

General dynamic covariance model, Kroner and Ng (1998)

$$
H_{t}=D_{t} R_{t} D_{t}+\Phi \odot \Theta_{t}
$$

where \odot - Hadamard product,
$D_{t}=\operatorname{diag}\left(\sqrt{\theta_{i i, t}}\right)$
$\Theta_{t}=\left(\theta_{i j, t}\right)$
R_{t} is specified as Engle or Tsui correlation matrix,
$\Phi=\left(\phi_{i j}\right), \phi_{i i}=0 \quad \forall i, \phi_{i j}=\phi_{j i}$
$\theta_{i j, t}=\omega_{i j}+a_{i}^{\prime} \epsilon_{t-1} \epsilon_{t-1}^{\prime} a_{j}+g_{i}^{\prime} H_{t-1} g_{j} \quad \forall i, j$
$a_{i}, g_{i}, \quad i=1, \ldots, N$ are $N \times 1$ vectors of parameters, and $\Omega=\left(\omega_{i j}\right)$ is positive definite and symmetric.

Element by element

$$
\begin{gathered}
h_{i i, t}=\theta_{i i, t} \forall i \\
h_{i j, t}=\rho_{i j, t} \sqrt{\theta_{i i, t} \theta_{j j, t}}+\phi_{i j} \theta_{i j, t}
\end{gathered}
$$

This model can be reduced to Engle or Tse Tsui DCC model if the following restrictions are imposed:
$-\Phi=0$

- $a_{i}=\alpha_{i} l_{i}, g_{i}=\beta_{i} l_{i}, \quad \forall i$, where l_{i} is the $i^{t h}$ column of an $N \times N$ identity matrix., and α_{i} and $\beta_{i}, i=1, \ldots, N$ are scalars.

Summary

The advantages of the dynamic correlation models are

- Easiness of estimation.
- Has small number of parameters $O(k)$ (analysis of large covariance matrices)
- The 2 -step procedure produces consistent results.

Therefore they can be used in the large-scale estimation. However, the DCC assumption that the whole correlation matrix is driven by a small number of parameters is not reasonable one for the purposes of the large-scale estimation.

Diagonal Factor MIDAS model

$$
\begin{gathered}
r_{t+h, t} \mid \mathcal{F}_{t-1} \sim N\left(0, H_{t+h, t}\right) \\
r_{t+h, t}=\Lambda f_{t+h, t}+\epsilon_{t+h, t} \\
H_{t+h, t}=\Lambda F_{t+h, t} \Lambda^{\prime}+\Sigma
\end{gathered}
$$

$r_{t+h, t}-n \times 1$ vector of asset returns
$f_{t+h, t}-m \times 1$ vector of orthogonal factors measurable w.r.t. $\mathcal{F}_{t+h}, m<n$
$\Sigma \quad-n \times n$ diagonal matrix of the idiosyncratic noise covariance
$\Lambda \quad-n \times m$ factor loading matrix
$F_{t+h, t}$ - diagonal matrix of conditional factor covariance

Diagonal Factor MIDAS model (cont.)

$$
\left\{F_{t+h, t}\right\}_{k k} \mid \mathcal{F}_{t}=\mu_{k}^{h}+\phi_{k}^{h} \sum_{j=1}^{j_{\max }} b\left(j, \theta_{k}^{h}\right)\left\{F_{t-j+1, t-j}\right\}_{k k}
$$

where $\left\{F_{t-j+1, t-j}\right\}_{k k}$ - one period realized volatility of the $k^{t h}$ factor. $\left\{F_{t-j+1, t-j}\right\}_{k}=\sum_{s=1}^{l} f_{k t-j+s / l}^{2}$ Factor Construction:

$$
f_{k t+j / l}=w_{k}^{\prime} r_{t+j / l}
$$

The first factor is the "market", i.e. $w_{1}=\iota / n$. All others are constructed using factor analysis from the residuals of the linear projection of individual stocks on the first factor.

Asymmetric specification

$$
\begin{aligned}
\left\{F_{t+h, t}^{a s y}\right\}_{k}= & {\left[\mu_{k}^{h+}+\phi_{k}^{h+} \sum_{j=1}^{j_{\max }} b\left(j, \theta_{k}^{+}\right) Q_{k t-j+1, t-j}\right] I_{\left\{f_{1, t-1>0\}}+\right.}+} \\
& {\left[\mu_{k}^{h-}+\phi_{k}^{h-} \sum_{j=1}^{j_{\max }} b\left(j, \theta_{k}^{-}\right) Q_{k t-j+1, t-j}\right] I_{\left\{f_{1, t-1} \leq 0\right\}} }
\end{aligned}
$$

where $I_{\left\{f_{1, t-1} \leq 0\right\}}$ is an indicator function, and

$$
I_{\left\{f_{1 t, t-1} \leq 0\right\}}+I_{\left\{f_{1 t, t-1}>0\right\}} \equiv 1
$$

Figure 1: MIDAS weights of the estimated factor volatility. w^{+}corresponds to conditioning on the positive market returns, w^{-}corresponds to conditioning on the negative.

Advantages of the Factor MIDAS model

- Has small number of parameters $O(k)$
- Number of lags can be increased at no cost
- Uses information available in high-frequency data
- Uses realized volatility as a measure of variance instead of squared returns
- The 2-step procedure produces consistent results.

Estimation and Testing

- Estimation

1. Construct high-frequency factors
2. Construct daily realized volatility of the factors
3. Estimate the variance of the factors by univariate MIDAS and construct the variance-covariance matrix

- Estimate Diagonal Factor MIDAS models for
- Symmetric and Asymmetric specification
- Number of factors $1,2,3$
- Number of stocks $5,10,15,22$
- Evaluate performance using three portfolios
- Testing standardized portfolio returns
- Constructing HIT auxiliary regression
- Comparing with DCC model

The considered portfolios are:

1. Minimum Variance portfolio: $w_{t+h, t}^{(1)}=\frac{\hat{H}_{t h, t}^{-1}}{\iota^{\prime} \hat{H}_{t+h, t^{t}}^{-1}}$
2. Value Weighed portfolio: $w_{t+h, t}^{(2)}=\frac{w_{t, t-h} \odot\left(1+r_{t+h, t}\right)}{w_{t, t-h}^{\prime}\left(1+r_{t+h, t}\right)}$
3. Equally Weighted portfolio: $w_{t+h, h}^{(3)}=\iota / n$

Performance Evaluation. Standardized Residuals

- Under H_{0} (correctly specified conditional variance-covariance matrix),

$$
(\lfloor T / h\rfloor-1) \hat{s}_{l}^{2}=\sum_{t=0}^{\lfloor T / h\rfloor} \frac{\left(r_{(t+1) h, t h}^{\prime} w_{(t+1) h, t h}^{l}\right)^{2}}{s_{(t+1) h, t h}^{2}} \sim \chi^{2}(\lfloor T / h\rfloor-1),
$$

where $s_{l t+h, t}^{2}=\left(w_{t+h, t}^{l}\right)^{\prime} H_{t+h, t} w_{t+h, t}^{l}$ - estimated conditional variance of the portfolios $l=\{1,2,3\}$.

- Accept H_{0} with $\alpha=.05$ if

$$
\frac{\chi_{\alpha / 2}^{2}}{(\lfloor T / h\rfloor-1)}(\lfloor T / h\rfloor-1)<\hat{s}^{2}<\frac{\chi_{1-\alpha / 2}^{2}(\lfloor T / h\rfloor-1)}{(\lfloor T / h\rfloor-1)}
$$

Results

Standard deviations of the different portfolios (minimum variance, value weighted and equally weighted) using 5 and 22 stocks and five day interval.

Model	Factors	MinVar	Value	Equal	MinVar	Value	Equal
	Five stocks					Twenty-two stocks	
DCC	-	1.046	0.975	0.963	1.170*	0.877*	0.981
asym	1	1.020	0.960	0.992	1.123	0.899	1.014
sym	1	1.010	0.963	0.986	1.247^{*}	0.830*	1.024
asym	2	1.025	0.967	1.011	1.071	0.945	1.002
sym	2	1.022	0.963	1.003	1.066	0.955	1.005
asym	3	0.992	0.955	0.973	1.032	0.948	1.000
sym	3	1.008	0.962	0.994	1.045	0.940	0.985

Performance Evaluation. Conditional Autoregressive Value-at-Risk, Engle and Manganelli (2000)

- Portfolio's l return in period $\{t+h, t\}$ is

$$
R_{t+h, t}^{l}=w_{t+h, t}^{l}{ }^{\prime} r_{t+h, t}
$$

- Define a binary variable $H I T_{t+h, t}^{l}=I_{\left\{R_{t+h, t}^{l}<V a R(q)\right\}}, q$ - quantile of interest.
- Under the null of correct specification and known $q, E\left(H I T_{t+h, t}^{l} \mid \mathcal{F}_{t-1}\right)=q$
- $H_{00}: \delta_{i}=0, \forall i$ in

$$
H I T_{t+h, t}-q=\delta_{0}+\sum_{i=1}^{r} \delta_{i} H I T_{t-(i-1) h, t-i h}+\delta_{r+1} V a R_{t+h, t}+\nu_{t}
$$

Performance Evaluation. Conditional Autoregressive Value-at-Risk, Engle and Manganelli (2000) (cont)

- Under the null of correct specification and unknown q,
- $H_{0}: \delta_{i}=0, \forall i>0$ in

$$
H I T_{t+h, t}-q=\delta_{0}+\sum_{i=1}^{r} \delta_{i} H I T_{t-(i-1) h, t-i h}+\delta_{r+1} V a R_{t+h, t}+\nu_{t}
$$

- Example: If $R_{t+h, t}^{l}$ is normal, and $q=.05$

$$
V a R_{t+h, t}(.05)=-1.65 \hat{\sigma}_{t+h, t}
$$

HIT regression results for the 5% quantile of the minimum variance and equally weighted portfolios using 5 and 22 DJ assets. Symmetric and asymmetric models.

Model	5 days horizon				10 days horizon			
	Min. Variance		Equally weighted		Min. Variance		Equally weighted	
	MIDAS	DCC	MIDAS	DCC	MIDAS	DCC	MIDAS	DCC
asym $_{5,1}$	0.254	0.056	0.334	0.436	0.669	0.285	0.693	0.011
$\operatorname{sym}_{5,1}$	0.804	0.056	0.174	0.436	0.779	0.285	0.012	0.011
asym ${ }_{5,3}$	0.322	0.056	0.223	0.436	0.779	0.285	0.074	0.011
sym $_{5,3}$	0.248	0.156	0.024	0.436	0.501	0.285	0.052	0.011
asym 22,1	0.081	0.004	0.680	0.015	0.072	0.000	0.071	0.000
sym 22,1	0.052	0.004	0.234	0.015	0.669	0.000	0.038	0.000
asym 22,3	0.164	0.004	0.130	0.015	0.532	0.000	0.051	0.000
sym $_{22,3}$	0.531	0.004	0.998	0.015	0.084	0.000	0.367	0.000

