
MIDAS Regressions and Their Applications in

Finance and Macroeconomics

Eric Ghysels

SAMSI Lecture notes - September 2005



Introduction

• The idea to construct regressions combining data with different sam-

pling frequencies is explored. Think of combining annual and quar-

terly/monthly data, monthly/daily, daily/intradaily, etc.

• We call the regression framework a MI xed DA ta S ampling re-

gression ( MIDAS regression).

• Suppose yt is sampled at some fixed, say annual, quarterly, monthly

or daily, frequency called interval of reference.

• Denote by x(m)
t a process sampled m times during interval of reference.



Introduction Examples Polynomials Examples again Asymptotics

• We can write a simple linear MIDAS regression:

yt = β0 +
jmax
∑

j=1

b(j, θ)x(m)
t−j/m + εt = β0 + B(L1/m)x(m)

t + εt

Where B(L1/m) = b(0, θ)+b(1, θ)L1/m+. . . +b(jmax, θ)Ljmax/m is

a polynomial of length jmax governed by small set of hyperparameters

θ, and Lj/mx(m)
t =x(m)

t−j/m, such that (L1/m)m = L
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Introduction Examples Polynomials Examples again Asymptotics

• Relates to distributed lag models

yt+1 = β0 +
jmax
∑

j=0

b(j, θ)xt−j + εt+1 = β0 + B(L)xt + εt+1

where B(L) is some finite or infinite lag polynomial operator, usually

parameterized by a small set of hyperparameters θ.

• See e.g. Dhrymes (1971) and Sims (1974) for surveys on distributed

lag models. Many econometrics textbooks also cover the topic, see

e.g. Greene (2000, chap. 17), Judge et al. (1985, chap. 9 - 10), Stock

and Watson (2003, chap. 13) Wooldridge (2000, chap. 18), among

others.
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Some material is taken from papers downloadable at:

http://www.unc.edu/~eghysels/

• There is a Risk-Return Tradeoff After All (JFE, forthcoming)

• The MIDAS Touch: Mixed Data Sampling Regression Models

• Predicting Volatility: Getting the Most out of Data Sampled at Dif-

ferent Frequencies(JEconometrics, forthcoming)

All of the above with P. Santa-Clara and R. Valkanov

• MIDAS Regressions: Further Results and New Directions, with P.

Santa-Clara, A. Sinko and R. Valkanov
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• Why Is Realized Absolute Value Such A Good Predictor Of Volatil-

ity?, with L. Forsberg

• The impact of economic news on the cross section of returns, with

A. Sinko and R. Valkanov

• Sales, Promotion and Financial Performance, with K. Pauwels

• Forecasting Professional Forecasters, with J. Wright

• Semiparametric MIDAS regressions, with E. Renault
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Motivating Examples

Example I: Risk-Return Trade-off

• The risk-return tradeoff involves the following regression:

Rt+1 = µ + γσ̂2
t + εt+1 (1)

where Rt+1 is the excess return on the market in month t + 1, and

σ̂2
t is the forecasted variance of returns for the same month t + 1,

based on information known at time t.

• French et al. (1987) use within-month daily returns to estimate the

realized variance in the period from t−1 to t (where typically D = 22,

44, 66, etc.):

σ̂2
t =

D
∑

j=1

r2
t−j/22 (2)
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Results with CRSP VW excess returns - Jan. 1946 to Dec. 2000

Window Conditional Mean Equation

(Months) µ γ R2

1 0.0107 -0.3422 0.0004

(5.6932) (-0.5365)

2 0.0085 1.2330 0.0034

(4.2150) (1.5041)

3 0.0073 2.0328 0.0072

(3.4309) (2.1725)

12 0.0085 1.4310 0.0015

(3.1820) (0.9704)
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Results with CRSP VW excess returns - With Control Variables

Months

µ γ DP TSPR RTBL R2

1 0.0105 -0.2145 0.0029 -0.0000 -0.0039 0.0139

(5.6112) (-0.3362) (1.7517) (-0.0051) (-2.3851)

2 0.0084 1.3316 0.0030 -0.0005 -0.0039 0.0178

(4.1538) (1.6212) (1.8502) (-0.2895) (-2.4073)

3 0.0072 2.1267 0.0031 -0.0005 -0.0038 0.0215

(3.3695) (2.2628) (1.9177) (-0.3196) (-2.3454)

12 0.0081 1.7147 0.0031 -0.0010 -0.0039 0.0164

(2.9925) (1.1371) (1.8620) (-0.5861) (-2.3855)

Table reports the same regression with three commonly used forecasters of excess

returns: the dividend yield, the term spread between a 10 year bond and the three-

month Treasury bill, and the stochastically detrended three-month Treasury bill rate

(Campbell (1991)).
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Example II: Predicting Realized Volatility

• Andersen, Bollerslev, Diebold and co-authors (2001 a,b, 2002), An-

dreou and Ghysels (2002), Barndorff-Nielsen and Shephard (2001,

2002 a,b, 2003), Taylor and Xu (1997), model realized volatility,

Q̃(m)
t+1, based on m intradaily returns:

Q̃(m)
t+1 = β0 + B(L)Q̃(m)

t + εt+1

• Such models are estimated with ’unconstrained’ polynomials

• Note again that one first computes Q̃(m)
t (aggregation) and then runs

regression involving aggregated data.
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Example III: News impact on the stock market

• The impact of macro and corporate news (low frequency event) on

the entire cross section of individual stock returns (high frequency).

This involves projecting low frequency data onto high frequency data.

There is a substantial literature on the topic. MIDAS regression allows

us to explore this further.

Example IV: Forecasting professional forecasters

• MIDAS methodology ideally suited to using high frequency financial

data to predict low frequency macro data. One example is to ’forecast

professional forecasters’ (quarterly or monthly) using financial market

data (daily or intra-daily).
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Parameterizations of the B
(

L1/m
)

Polynomial

Exponential Almon and Beta Polynomials

• We propose two parameterizations of b(k; θ).

• The first one is:

b(k; θ) =
eθ1k+...+θQkQ

∑kmax

k=1 eθ1k+...+θQkQ (3)

which we call the ”Exponential Almon lag,” since it is related to

“Almon lags” (see e.g. Judge et al. 1985).
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• The second parameterization has only two parameters, or θ = [θ1; θ2]:

b(k; θ1, θ2) =
f( j

jmax, θ1; θ2)
∑jmax

j=1 f( j
jmax, θ1; θ2)

(4)

where:
f(x, a, b) = xa−1(1−x)b−1

B(a,b)

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Γ(a) =
∫ ∞
0 e−xxa−1dx

• Specification (??) has, to the best of our knowledge, not been used

in the literature. It is based on the beta function and we refer to it as

the “Beta lag.”
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MIDAS with stepfunctions

• MIDAS with stepfunctions (special case is HAR (Heterogenous Au-

toregressive) Model (Corsi(2003)))

Q̃(m)
t+1 = β0 + βDXt−1,t + βWXt−5,t + βMXt−20,t + εt+1

for X various regressors discussed later. The advantage of using

stepfunctions is that one can use OLS, the disadvantage, is that

parsimony may be gone.
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Example I Revisited: Risk-Return Trade-off

• We estimate via QMLE the parameters θi jointly with µ and γ using

MIDAS regression:

Rt+1 ∼ N
(

µ + γV MIDAS
t , V MIDAS

t

)

(5)

where

V MIDAS
t = 22

∞
∑

d=1

w(d, θ1, θ2)r
2
t−d

and

w(d, θ1, θ2) =
exp{θ1d + θ2d2}

∑∞
i=1 exp{θ1i + θ2i2}

• In all the results that follow, we use the past 260 days as the maximum

lag length (results are not sensitive to increasing the lag length beyond

one year, nor to alternative polynomial specifications).
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Risk Return Trade-off: MIDAS regression results

Sample µ γ θ1 θ2 R2
R R2

σ2 LLF

(×103) (×102) (×109)

1946.01-2000.12 4.800 4.007 -1.353 -3.984 0.024 0.082 1221.837

[2.419] [2.647] [-1.903] [-0.092]

1946.01-2000.12 4.809 4.254 -1.402 -3.293 0.041 0.251 1239.100

(No 1987 Crash) [2.515] [2.950] [-1.959] [-0.011]
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We estimate via QMLE the GARCH-M:

Rt+1 ∼ N
(

µ + γV GARCH
t , V GARCH

t

)

where

V GARCH
t =

ω

1 − β
+ α

∞
∑

i=0

βiε2t−i

using past monthly squared returns. Results are consistent with Glosten, Jagannathan,

and Runkle (1993) and others in the literature, namely:

Model µ γ ω α β R2
R R2

σ2 LLF

(×103) (×103)

GARCH(1,1)-M -0.740 6.968 0.125 0.069 0.860 0.010 0.070 1152.545

[-0.370] [0.901] [0.244] [1.398] [18.323]

ABS-GARCH(1,1)-M 1.727 6.013 2.751 0.099 0.858 0.010 0.071 1156.142

[0.424] [0.873] [0.947] [1.764] [17.323]
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• The Kalman Filter can be used to interpolate ”missing data” (see e.g.

Harvey and Pierse (1984) and subsequent work). The Kalman Filter

applies the linear Gaussian systems. In general settings, however,

aggregation and interpolation is not so straightforward.

• Advantage of MIDAS is the reduced form approach.

• Along similar lines one can build up high-frequency data GARCH

models and through temporal aggregation (see however, Drost and

Nijman (1993) and Meddahi and Renault (2003)) to obtain MIDAS

regression projection. But here too there are limitations, works for

”simple” models.

• Suppose data is generated by two-factor GARCH model at 1/m

frequency and one runs MIDAS regression:

m
∑

j=1

[r(m)
t+j/m]2 = β0 + β1B(L1/m)[r(m)

t ]2 + εt

Ghysels MIDAS regressions 20



Introduction Examples Polynomials Examples again Asymptotics

Reverse Engineering MIDAS projection two-factor volatility model
((ρ1(m) + ρ2(m)) + (ρ1(m) + ρ2(m))

2 + ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))
3 + 2(ρ1(m)

+ρ2(m))ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))
4 + 3(ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m)

+(ρ1(m)ρ2(m))
2) + (ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m)

+(ρ1(m)ρ2(m))
2 + (ρ1(m) + ρ2(m))

3ρ1(m)ρ2(m) + 2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))
2)L1/m

+((ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) − (ρ1(m) + ρ2(m))(ρ1(m) + ρ2(m) − α1(m)

−α2(m)) − (ρ1(m) + ρ2(m) − α1(m) − α2(m)) − (ρ1(m) + ρ2(m))
2(ρ1(m) + ρ2(m) − α1(m)

−α2(m)) − ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m)) + (ρ1(m) + ρ2(m))(ρ1(m)ρ2(m)
−ρ1(m)α2(m) − ρ2(m)α1(m)) + (ρ1(m) − ρ2(m))

3(ρ1(m) + ρ2(m)

−α1(m) − α2(m)) + (ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

−2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))(1 − (ρ1(m) + ρ2(m))L
1/m

+ρ1(m)ρ2(m)L2/m)/(1 − (ρ1(m) + ρ2(m) − α1(m) − α2(m))L
1/m + (ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m))L
2/m) + ((ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

+ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))+

(ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) + ρ1(m)ρ2(m)(ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m)) + (ρ1(m) + ρ2(m))
3

+2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))×

(1 − (ρ1(m) + ρ2(m))L
1/m + ρ1(m)ρ2(m)L2/m)L1/m/

(1 − (ρ1(m) + ρ2(m) − α1(m) − α2(m))L
1/m + (ρ1(m)ρ2(m) − ρ1(m)α2(m)

−ρ2(m)α1(m))L
2/m)
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Comparison of MIDAS and GARCH using Daily and Monthly Returns
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Asymmetries

To examine whether the risk-return tradeoff is robust to the inclusion

of asymmetric effects in the conditional variance, we introduce the

asymmetric MIDAS estimator:

V ASYMIDAS
t = 22[φ

∑∞
d=1 w(d, θ−

1 , θ−
2 )1−

t−dr
2
t−d+

(2 − φ)
∑∞

d=1 w(d, θ+
1 , θ+

2 )1+
t−dr

2
t−d]

where 1
+
t−d denotes the indicator function for {rt−d ≥ 0}, 1

−
t−d denotes

the indicator function for {rt−d < 0}, and φ is in the interval (0,2).
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Results with Asymmetries

Sample µ γ +/- θ1 θ2 φ R2
R R2

σ2

(×103) (×102) (×103)

1946:01- 5.766 3.314 (-) 9.573 -7.640 0.606 0.025 0.085

2000:12 [2.057] [2.695] [0.507] [-0.929] [3.381]

(+) 0.073 -0.210

[0.133] [-0.539]

1946:01- 5.550 3.735 (-) -7.541 -2.340 0.716 0.043 0.363

2000:12 [1.989] [2.868] [-1.775] [-0.342] [5.010]

(No Crash) (+) -0.214 -0.910

[-0.613] [-0.498]
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GARCH-M Comparison - results are consistent with Glosten,

Jagannathan, and Runkle (1993) and others in the literature.

Model µ γ ω α β λ R2
R

R2
σ2

LLF

(×103) (×102) (×102)

EGARCH(1,1)-M 14.978 -2.521 -640.708 -0.325 0.497 -3.339 0.011 0.071 1159.102

[6.277] [-1.285] [-1.790] [-2.977] [5.938] [-2.206]

ASYGARCH(1,1)-M 1.117 -3.248 0.056 0.018 0.609 -28.723 0.010 0.077 1164.023

[0.913] [-1.811] [0.202] [1.980] [7.842] [-2.131]

QGARCH(1,1)-M 13.970 -1.994 0.060 0.086 0.145 -9.320 0.010 0.072 1161.173

[2.378] [-0.171] [0.356] [3.565] [3.269] [-7.188]
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Example II Revisited: Predicting Realized Volatility

• The objective of interest is predicting the increments in the quadratic

variation of the return process over some future period, H, from one

week (H = 5) to one month (H = 20) horizon. This is the variance

that matters for option pricing and portfolio management.

• The quadratic variation is not observed directly but can be measured

with some discretization error. One such measure would be the sum

of (future) (intra-daily) squared returns.
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• We start with daily regressors and consider the following:

Q̃(Hm)
t+H,t = µH + φH

kmax
∑

k=0

bQ
H(k, θ)Xt−k + εX

Ht

where the following regressors are considered:

– Past daily quadratic variation Q̃(m)
t,t−1 advocated by Andersen et al.

(2001, 2002, 2003). The daily QV is computed by the sum of

(say) 5-minute intra-daily squared returns.

– Past daily squared returns, corresponds to the ARCH/GARCH class

of models (under some parameter restrictions).

– Past daily absolute returns.

– Past daily high minus low (advantage is that it is available over

long periods, unlike HF data.

– Past Power variation, i.e. sum of (say) 5-minute intra-daily ab-

solute returns, see in particular Barndorff-Nielsen and Shephard

(2002c) and Woerner (2002).
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• All of the MIDAS regressions come in various ’flavors’, i.e. using log

transformations, or square root etc.

• Andersen et al. (2003) advocate the use of long memory models to

parsimoniously parameterize the weights. In particular, they consider

models of the following type:

(1 −
5

∑

k=1

bA(k)Lk)(1 − L)d log Q̃(m)
t+1,t = µ + εt (6)

• This model will be our benchmark for all in-sample and out-of-sample

forecast comparisons and is henceforth referred to as the “ABDL”

model.

• Dataset consists of five-minute intra-day returns of the Dow Jones

Composite Portfolio (DJ) over a ten year period, from April 1, 1993

to October 31, 2003.
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In-Sample MSE Comparisons of MIDAS Models with Daily Regressors - DJ Index

(Ratio of MSE’s w.r.t. ABDL Sample Apr. 1, 93 - Mar. 31, 01
Q̃

(m)
t,t−1

r2
t,t−1

|rt,t−1| [hi − lo]t,t−1 P̃
(m)
t,t−1

Panel A: Q̃
(m)
t,t−H

MIDAS with daily lags of regressors

1 wk 0.871 1.043 0.969 0.856 0.825

2 wks 0.851 0.962 0.875 0.791 0.758

3 wks 0.793 0.881 0.774 0.722 0.691

4 wks 0.805 0.908 0.806 0.743 0.681

Panel B: log(Q̃
(m)
t,t−H

) MIDAS with daily lags of regressors

log(Q̃
(m)
t,t−1

) log(rt,t−1)2 log |rt,t−1| log[hi − lo]t,t−1 log(P̃
(m)
t,t−1

)

1 wk 0.924 1.509 — 1.062 0.921

2 wks 0.881 1.396 — 1.015 0.867

3 wks 0.821 1.134 — 0.893 0.772

4 wks 0.812 1.177 — 0.921 0.761
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Out-of-Sample MSE Comparisons of MIDAS Models with Daily Regressors - DJ Index

Q̃
(m)
t,t−H

MIDAS log(Q̃
(m)
t,t−H

) MIDAS

Q̃
(m)
t,t−1

r2
t,t−1

|rt,t−1| [hi − lo]t,t−1 P̃
(m)
t,t−1

log Q̃
(m)
t,t−1

log r2
t,t−1

log[hi − lo]t,t−1 log P̃
(m)
t,t−1

1 wk 0.802 1.048 1.005 0.819 0.778 0.746 1.457 0.815 0.729

2 wks 0.920 1.168 1.039 0.855 0.726 0.794 1.296 0.882 0.731

3 wks 0.814 0.995 0.874 0.794 0.724 0.751 1.089 0.797 0.714

4 wks 0.872 1.089 0.985 0.857 0.774 0.893 1.162 0.981 0.854
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Some Theory

• A typical continuous time SV model for log-prices p(t) can be written

as:

dp (t) = µ (t) dt + σ (t) dW (t) (7)

• To make the comparison of persistence properties, it will be most

convenient to specify a diffusion for σ(t) and derive the implied

autocorrelation properties of quadratic and power variation.

• Following Barndorff-Nielsen and Shephard (2001) we use a non-

Gaussian Ornstein-Uhlenbeck (OU) process:

dσ(t) = −λσ(t)dt + dz(λt) (8)

where z(t) is a Lévy process with non-negative increments.

• Within this diffusion framework Forsberg and Ghysels (2004) show

that PV is expected to be the best predictor. We expect: PV �

BPV (C) � QV.
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Models - MIDAS with step functions

We predict the normalized Realized Variance in-sample and out-of-sample

using

• MIDAS regressions with polynomials (Ghysels, Santa-Clara and Valka-

nov(2003a JFE forthcoming, 2003b JoE forthcoming))

RV
1/2

t,t+H = µH + B (L)Xt + εHt

• MIDAS with stepfunctions Forsberg and Ghysels (2004) (special case

is HAR (Heterogenous Autoregressive) Model (Corsi(2003)))

RV
1/2

t,t+H = β0 + βDXt−1,t + βWXt−5,t + βMXt−20,t + εt+H
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In-Sample Results modeling RV 1/2 of S&P 500 1985-2003 - Sign level of the Bipower test = 0.999

Stepfunction MIDAS-RV1/2 Beta polynomial MIDAS-RV1/2

Horizon RV1/2 BPV1/2 C1/2 (CJ)1/2 RAV RV1/2 BPV1/2 C1/2 (CJ)1/2 RAV

R2

1 day 0.591 0.592 0.592 0.594 0.623 0.596 0.595 0.598 0.599 0.617

1 wk 0.656 0.649 0.654 0.658 0.690 0.671 0.667 0.671 0.672 0.687

2 wks 0.648 0.639 0.646 0.651 0.690 0.670 0.665 0.670 0.671 0.689

3 wks 0.633 0.623 0.631 0.636 0.680 0.656 0.651 0.656 0.657 0.678

4 wks 0.615 0.603 0.613 0.617 0.665 0.638 0.632 0.638 0.639 0.662

MSE

1 day 1.344 1.333 1.343 1.339 1.265 1.314 1.314 1.311 1.309 1.269

1 wk 0.513 0.519 0.517 0.510 0.458 0.482 0.486 0.481 0.480 0.463

2 wks 0.382 0.391 0.385 0.378 0.330 0.350 0.355 0.349 0.348 0.331

3 wks 0.339 0.349 0.342 0.335 0.290 0.310 0.316 0.309 0.308 0.292

4 wks 0.319 0.330 0.323 0.316 0.274 0.293 0.300 0.294 0.292 0.277
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Summary and robustness of empirical results

• RAV is the best predictor/ regressor for RV (as predicted by theory)

• Robustness of empirical results:

– Result holds when modeling Realized Variance in levels

– Result is the same regardless of the significance level of the bipower

test, we have investigated α = 0.5, 0.95, 0.99 and 0.999

– Same results when a dummy for the jump-days is included

– Robust to subsample period: S&P 1990-2002

– Results are robust to using other evaluation measures such as

Heterscedasticity Adjusted Error (Bollerslev and Ghysels (1996))
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Example III Revisited: Impact of news

Work in progress joint with Arthur Sinko and Ross Valkanov

• The realized return of an asset between periods t−1 and t can always

be written as

ri,t = Et−1(ri,t) + εi,t (9)

where asset i’s expected return Et−1(ri,t) is obtained using all available

information at time t − 1.

• The second term, εi,t, is the unexpected return which reflects the

response of market participants to news in that period.

• Ghysels, Sinko and Valkanov (2005) document the impact of macro

and corporate news on the entire cross section of individual stock

returns.

• They use a reverse MIDAS regressions which allow them to analyze the

lead-lag relation between variables sampled at different frequencies.
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• Recall Granger causality, meaning the one-step ahead prediction of

yt using past yt−i can be improved upon in a least squares sense by

using also lagged xt−i.

• While there are many ways of conducting Granger causality tests,

Sims proposed the following regression:

xt = a0 +

kF
∑

j=1

bF
j yt+j +

kP
∑

j=1

bP
j yt−j + εt

• Testing for Granger causality between xt and yt amounts to testing

whether the coefficients bF
j are equal to zero.

• With this idea in mind let us revisit MIDAS regressions and let us

consider:

xt = β0 + βF
1 BF(L−1/m)y(m)

t + βP
1 BP(L1/m)y(m)

t + εt (10)
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where BF(L1/m) = bF
0 + bF

1 L1/m + bF
2 L2/m+ . . . +bF

jmaxLjmax
F

/m is a

polynomial of length jmax
F in the L1/m operator, and Lj/mx(m)

t =x(m)
t−j/m.

• The reverse MIDAS specification allows us to separate how much

markets anticipated the announcement, via the parameter βP
1 and

the polynomial bP
1 L1/m and how much markets responded to the

announcement, via the parameter βF
1 and the polynomial bP

1 F 1/m.

• We look at daily and intra-daily projections.

• We examine the entire cross-section of stocks.
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• We find that macro news (GDP growth, industrial production, earnings

per capita, consumer confidence, unemployment claims, CPI inflation,

PPI inflation, and housing starts) have an impact on the cross section

of stock returns. This is contrary to what previous studies have found

(e.g., Patelis (1999)).

• Moreover, the impact of macro news differs across firm characteristics.

For instance, returns of small market capitalization stocks respond

more to macro news than the returns of medium or large cap stocks.

• In addition, returns of large book-to-market firms respond more to

macro news.
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• The economic and statistical significance of our findings is due to at

least two factors:

– First, reverse MIDAS regressions represent a statistically powerful

way of capturing the impact of news on stock returns.

– Second, by considering the entire cross section of publicly traded

U.S. companies, we are able to identify the impact of macroeco-

nomic news where previous studies focusing on limited number of

firms might have failed.

• We also find that microeconomic (earnings) announcements have little

effect on the cross section of returns.
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Example IV Revisited: Application of MIDAS to

forecasting the predictions of forecasters

Work in progress joint with Jonathan Wright

• MIDAS methodology ideally suited to using high frequency financial

data to predict low frequency macro data

• Low frequency macro forecasts are less noisy than ex-post realized

macro data and so potentially easier to predict

• Once a month/quarter, observe forecasts of some future macro/finance

variable (e.g. inflation four quarters hence), ft, from

– Survey of Professional Forecasters (quarterly)

– Consensus Forecasts (monthly)

• Know deadline dates for completion of survey: dt
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• Actual timing of responses is however fuzzy

• Objective: use daily asset return data to predict the next forecast.

• Allows for forecasts to be predicted at daily frequency

• Useful to policy makers and analysts to know best guess for market

forecast of next years’ inflation as of today.

• Conceivably could even use intradaily data
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• Model: Prediction equation day d∗
t+1 = θ(dt+1 − dt), 0 < θ ≤ 1 :

ft+1 − ft = α + Σk
j=1βjγ(L)rDAILY

t,j + ρft + εt

where γ(L)rDAILY
t,i is dist. lag of daily returns on asset i over nl days

up to d∗
t+1.

• Model can then be used to forecast ft+1 as of day d∗
t+1 e.g. if θ = 1,

predicts ft+1 as of completion deadline date (survey not out yet)

• To avoid overparameterizing γ(L), can use a MIDAS specification

and we estimate parameters of the model (α, β1, β2, ...βk, ρ, κ1, κ2)

by MLE
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• Can compare three predictions:

– Prediction from the baseline model with no asset returns at all:

ft+1 − ft = α + ρft + εt

estimated by OLS (model BASELINE).

– Prediction from the model using the average daily asset returns

over nl days prior to d∗
t+1 but without estimating any MIDAS

polynomial, imposing : κ1 = κ2 = 1

– or equivalently γ(L)=
∑nl

j=1 n−1
l Lj−1 (model EW-MIDAS).

– And finally, prediction from the full-blown MIDAS model (MIDAS).

• For asset returns use, for example,

– excess stock market returns and

– changes in the fourth eurodollar futures contract.
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Compare the R-squareds from the three prediction methods

Prediction θ = 1 θ = 2/3 θ = 1/3

BASELINE EW-MIDAS MIDAS EW-MIDAS MIDAS EW-MIDAS MIDAS

SPF (nl = 90)

1 Quarter Hence

GDP 0.20 0.47 0.58 0.49 0.59 0.51 0.58

CPI 0.15 0.29 0.34 0.20 0.26 0.21 0.28

T Bill 0.05 0.60 0.68 0.65 0.68 0.59 0.64

Unemployment 0.02 0.37 0.44 0.41 0.45 0.43 0.48

Profits 0.14 0.28 0.28 0.19 0.33 0.20 0.31

4 Quarters Hence

GDP 0.07 0.13 0.21 0.11 0.24 0.11 0.25

CPI 0.05 0.24 0.36 0.60 0.68 0.65 0.68

T Bill 0.05 0.58 0.70 0.66 0.71 0.56 0.64

Unemployment 0.02 0.39 0.53 0.44 0.54 0.45 0.57

Profits 0.24 0.32 0.32 0.29 0.32 0.27 0.32
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Asymptotics

I: Aggregation Bias and Aliasing Revisited

• When data of different sampling frequencies are mixed, one invariably

deals with temporal aggregation.

• To study aggregation issues it is convenient to assume that the

underlying stochastic processes evolve in continuous time and data

are collected at discrete points in time.

• Such a setting has the appeal of imposing a priori a structure on

discretely observed data that is independent of the sampling interval.
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• To discuss many issues ranging from parameterization and approxi-

mations to discretization biases let us start with the continuous time

setting:

y(t) = b ∗ x(t) + u(t) (11)

=
∫ ∞

−∞
x(t − s)b(s)ds + u(t)

where the symbol ∗ denotes the convolution operator. The errors in

equation (??) are not necessarily i.i.d.

• Identification of b in equation (??) rests on the assumption that the x

process is, up to second moments, truly exogenous, i.e. E[x(t)u(s)]

= 0, ∀ s and t.

• Sims (1971) and Geweke (1978) examine equations like (??) and

study the relationship between inference drawn from discrete time

models and the parameters of the continuous time convolution.
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• A discrete time distributed lag model corresponding to (??) would be

as follows:

Y (m)
t/m =

1

m

∞
∑

s=−∞

B(m)(
s

m
)X(m)

(t−s)/m + U (m)
t/m (12)

where both y and x are sampled at frequency 1/m.

• The topic of discretization bias in distributed lag models, i.e. the

difference between an estimator B(m) and b for any given m, has been

extensively studied, see for instance Sims (1971), Geweke (1978),

Hansen and Sargent (1983, 1991), Hansen and Sargent (1991),

Phillips (1972, 1973, 1974), among others.
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• MIDAS regressions involve processes with various sampling frequen-

cies. More specifically, we study projections of Y sampled with

m = 1 and X(m) sampled with m > 1. MIDAS regression models

are therefore:

Yt =
1

m

∞
∑

s=−∞

B̄(m)(
s

m
)X(m)

(t−s)/m + Ut (13)

• It is important to note that we only deal with OLS estimators, and

therefore are not interested at this stage with efficiency issues. Hence,

we examine OLS estimators B(m) in distributed lag models, similar to

Sims (1971) and Geweke (1978), and OLS estimators B̄(m) in MIDAS

regressions.
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• The discretely sampled distributed lag regression yields the OLS

estimator:

B̃(m) = Fm[Sxb̃]/Fm[Sx] = Fm[Syx]/Fm[Sx] (14)

where Syx is the co-spectrum of continuously sampled y(t) and x(t).

• The intuition why equation (??) also suggests that MIDAS regressions

may resemble distributed lag models in terms of discretization bias,

it is important to note that what matters, besides Fm[Sx], is the

covariance Fm[Syx]. In a MIDAS regression, assuming stationarity

and point sampling of y and x it is clear that ultimately we recover

the covariance between yt and any lag of xt.
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II: Efficiency comparisons between MIDAS and
distributed lag models

• Consider again the discrete time distributed lag model like (??) where

both y and x are sampled at a fixed frequency 1/m :

Y (m)
t/m =

1

m

∞
∑

s=−∞

b(m)(
s

m
)X(m)

(t−s)/m + u(m)
t/m (15)

where b(m) is the pseudo-true value associated with the fixed m. We

try to obtain an efficient estimator which we will denote Bm
H given a

data set of size mT for both Y (m) and X(m).

• Consider also the MIDAS regression:

Yt =
1

m

∞
∑

s=−∞

b̄(m)(
s

m
)X(m)

(t−s)/m + ut (16)
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• A simple strategy that leads to efficient estimation is to prefilter the

equation by b2 :

Y (m)
t/m =

∞
∑

s=−∞

(̃b(m)
2 (

s

m
))Y (m)

(t−s−1)/m +
∞
∑

s=−∞

b(m)
1 (

s

m
)X(m)

(t−s)/m + v(m)
t/m

where the availability of lagged Y (m)
t/m allows us to apply the polynomial

b2.

• In a MIDAS regression this strategy is infeasible due to the lack of

high frequency Y (m)
t/m . Consequently, the errors remain correlated and

the estimator has to settle with an autocorrelation structure that

cannot be further unraveled. The clear advantage of distributed lag

models is the availability of the additional information about Y (m).
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