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Local Ensemble Transform Kalman Filter

LETKF is a model-independent data assimilation
method designed for spatiotemporally chaotic systems

that is:
— Computationally ef cient and robust

— Mathematically simple and exible

This approach combines elements of the Ensemble
Transform Kalman Filter [Bishop et al. 2001] and the
Local Ensemble Kalman Filter [Ott et al. 2004].



Starting Point

Data assimilation by statistical interpolation [Lorenc
1981].

Given a background ( rst-guess) model state x° with
(presumed) covariance B, observations y° with
covariance R, and a function H from model space to

observation space, we seek to minimize the function
J(x) = (x - xP)TBL(x - xP) + [y© - HX)ITR[y° - H(X)].

The minimizing state x? is called the analysis.



Ensemble Kalman Filtering

Ensemble Kalman Iters [Evensen 1994] evolve an
ensemble of initial conditions with the nonlinear model
and let x° and B be the sample mean and covariance

of the ensemble forecast states at the analysis time.

Bad news: The background covariance B re ects only

uncertainties in the space S spanned by the ensembile.

Good news: The analysis takes place in the

low-dimensional space S (computationally ef cient).



Guiding Question

Which linear combination of the ensemble states best

ts the data?

Let k be the number of ensemble members, and let X
be a matrix of normalized ensemble perturbations:
each column of X is the difference between an
ensemble state x°; and the ensemble mean x°, divided

J
bypk-lsothatB:XXT.

Express a model state x in S as x = xP + Xw, where w

IS a k-dimensional weight vector. Which w is best?
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Linearization of H(x) in Ensemble Space S

For each ensemble state x°;, let y°; = H(x")). Let the
mean of this background observation ensemble be yb,

and let Y be the matrix with columns (y° - yb)/Io k- 1.
Make the linear approximation H(XP + Xw)  yP + Yw.

In terms of w, the function to be minimized Is
Jw)  wlhw + (y0 - yP - Yw)TR1(yO - yb - yw).

(The background mean of w is O and its background

covariance is the identity matrix.)



Analysis Mean and Covariance

In the w coordinate system, the analysis mean w# and
covariance A are given by the standard Kalman lter

equations
A=(+YTR1y)l
wa = AYTR-l(yO _ yb)

The matrix that is inverted to nd A is small (k by k)

and has no small eigenvalues.

To perform multiplicative covariance in ation, divide |

by r > 1 in the formula for A.



Analysis Ensemble

To form the analysis ensemble weight vectors Waj, add
to w? the columns of the symmetric matrix W = [(k -
1)A]¥2: this ensures the correct analysis covariance.

Any matrix for which WWT = (k - 1)A would do; this is
the choice available in a square root Iter [Tippett et al.
2003].

Our choice minimizes the distance between the
background and analysis ensembles and ensures that,
when done locally, the analysis ensemble varies
continuously from one region to the next [Ott et al.
2004].



| ocalization

For an ensemble of moderate size (k < 100), the linear
combination that best ts the data in one region may
be signi cantly different from the best linear

combination in another region.

Localize by doing a separate analysis at each model
grid point, ignoring data beyond a certain distance
[Houtekamer & Mitchell 1998].

One can choose which data to use, and do the

resulting analysis, independently at each grid point.
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Perfect Model Results

These results were obtained by John Harlim using the

model proposed by Lorenz in 1995:
de/dt = (Xj+1 - Xj+2)Xj-l - Xj + 8
forj=1,2,... N.

From a “truth run” we generated “observations” at

each node with R = I.

We measured the RMS error of our method for various
ensemble sizes and localizations, using covariance
In ation r =1.04.
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Global Filter
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Local Filter

Average RMS Error

Ensemble Size

Using only observations from within 6 grid points

12



Asynchronous Observations

In an operational setting, data cannot be assimilated
as frequently as it is taken; several hours worth of data
IS assimilated at one analysis time.

Which linear combination of the ensemble trajectories
best ts the data?

For observations taken at time t, apply H to the
ensemble states at time t when forming the
background observation ensemble vectors ybj, and
proceed exactly as before. This simpli es the 4D
approach described in [Hunt et al. 2004].
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ADLETKF Results

Black: LETKF ignoring intermediate observations
Red: 4ADLETKF withr = 1.12
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Conclusions

LETKF scales well to large systems (similar results up
to N = 400 and we presume beyond).

It does not require explicitly linearizing the observation
operator.

The amount of localization is easily adjusted.

Observations taken at different times can be
assimilated simultaneously.

More from our group:
http://keck2.umd.edu/weather/
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