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Local Ensemble Transform Kalman Filter

� LETKF is a model-independent data assimilation

method designed for spatiotemporally chaotic systems

that is:

– Computationally ef�cient and robust

– Mathematically simple and �exible

� This approach combines elements of the Ensemble

Transform Kalman Filter [Bishop et al. 2001] and the

Local Ensemble Kalman Filter [Ott et al. 2004].
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Starting Point

� Data assimilation by statistical interpolation [Lorenc

1981].

� Given a background (�rst-guess) model state xb with

(presumed) covariance B, observations yo with

covariance R, and a function H from model space to

observation space, we seek to minimize the function

J(x) = (x - xb)TB-1(x - xb) + [yo - H(x)]TR-1[yo - H(x)].

� The minimizing state xa is called the analysis.
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Ensemble Kalman Filtering

� Ensemble Kalman �lters [Evensen 1994] evolve an

ensemble of initial conditions with the nonlinear model

and let xb and B be the sample mean and covariance

of the ensemble forecast states at the analysis time.

� Bad news: The background covariance B re�ects only

uncertainties in the space S spanned by the ensemble.

� Good news: The analysis takes place in the

low-dimensional space S (computationally ef�cient).
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Guiding Question

� Which linear combination of the ensemble states best

�ts the data?

� Let k be the number of ensemble members, and let X

be a matrix of normalized ensemble perturbations:

each column of X is the difference between an

ensemble state xb
j and the ensemble mean xb, divided

by
p

k - 1 so that B = XXT.

� Express a model state x in S as x = xb + Xw, where w

is a k-dimensional weight vector. Which w is best?
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Linearization of H(x) in Ensemble Space S

� For each ensemble state xb
j, let yb

j = H(xb
j). Let the

mean of this background observation ensemble be yb,

and let Y be the matrix with columns (yb
j - yb)/

p
k - 1.

� Make the linear approximation H(xb + Xw) � yb + Yw.

� In terms of w, the function to be minimized is

J(w) � wTw + (yo - yb - Yw)TR-1(yo - yb - Yw).

(The background mean of w is 0 and its background

covariance is the identity matrix.)
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Analysis Mean and Covariance

� In the w coordinate system, the analysis mean wa and

covariance A are given by the standard Kalman �lter

equations

A = (I + YTR-1Y)-1

wa = AYTR-1(yo - yb)

� The matrix that is inverted to �nd A is small (k by k)

and has no small eigenvalues.

� To perform multiplicative covariance in�ation, divide I

by r > 1 in the formula for A.
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Analysis Ensemble

� To form the analysis ensemble weight vectors wa
j, add

to wa the columns of the symmetric matrix W = [(k -

1)A]1/2; this ensures the correct analysis covariance.

� Any matrix for which WWT = (k - 1)A would do; this is

the choice available in a square root �lter [Tippett et al.

2003].

� Our choice minimizes the distance between the

background and analysis ensembles and ensures that,

when done locally, the analysis ensemble varies

continuously from one region to the next [Ott et al.

2004].
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Localization

� For an ensemble of moderate size (k < 100), the linear

combination that best �ts the data in one region may

be signi�cantly different from the best linear

combination in another region.

� Localize by doing a separate analysis at each model

grid point, ignoring data beyond a certain distance

[Houtekamer & Mitchell 1998].

� One can choose which data to use, and do the

resulting analysis, independently at each grid point.
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Perfect Model Results

� These results were obtained by John Harlim using the

model proposed by Lorenz in 1995:

dxj/dt = (xj+1 - xj+2)xj-1 - xj + 8

for j = 1, 2, ... N.

� From a “truth run” we generated “observations” at

each node with R = I.

� We measured the RMS error of our method for various

ensemble sizes and localizations, using covariance

in�ation r = 1.04.
10



Global Filter

Red: N = 40, Blue: N = 80
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Local Filter

Using only observations from within 6 grid points
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Asynchronous Observations

� In an operational setting, data cannot be assimilated

as frequently as it is taken; several hours worth of data

is assimilated at one analysis time.

� Which linear combination of the ensemble trajectories

best �ts the data?

� For observations taken at time t, apply H to the

ensemble states at time t when forming the

background observation ensemble vectors yb
j, and

proceed exactly as before. This simpli�es the 4D

approach described in [Hunt et al. 2004].
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4DLETKF Results

Black: LETKF ignoring intermediate observations

Red: 4DLETKF with r = 1.12
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Conclusions

� LETKF scales well to large systems (similar results up

to N = 400 and we presume beyond).

� It does not require explicitly linearizing the observation

operator.

� The amount of localization is easily adjusted.

� Observations taken at different times can be

assimilated simultaneously.

� More from our group:

http://keck2.umd.edu/weather/
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