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1 Some Statistical Problems

It’s best to begin with some examples.

Example 1 Consider an experimental pain reliever whose dosage x may be controlled by a
physician. If y is hours of relief, then we might suppose that y = p(x) + € where p is a

non-decreasing function and € is a random error.

Example 2 Consider a galaxy (or globular cluster), and let V- = (Vi, V5, V3) denote the

velocity of a randomly selected star. Suppose that the galaxy is isotropic, so that the density
of V' is of the form

f(’Ul, Vo, ’U3) = h(’U% + ’U; + Ug)
Often astronomers can measure radial velocities. With a proper choice of coordinate axes,
this becomes V3. The density of V3 is

Flvs) = /R (3 + 03+ 3)dvydvy = 7 /0 ht +v2)dt = 7 / h(t)dt

2
U3

This is a symmetric function of vs and decreasing in vs > 0.

The examples illustrate two basic statistical problems, the monotone regression problem

and the decreasing density estimation problem. In the monotone regression problem,

yr = p(Tr) + €, (1)
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where p is a monotone function, €1, - - -, €, are independent errors with mean 0 and variances
o?/wy, -+, 02wy, wy, -, w, > 0 are known, and ¢ may be known or unknown. In this

case it is natural to minimize .
i=1

over —o0 < 01 <0y--- <4, < oo.
In the density estimation problem, one observes a sample of positive random variables

Xy, X, ~ f, were f is non-increasing on (0, 00). The likelihood function is then

n

L(f) = H f(xz)

i=1
Let #; < -+ < z, denote the order statistics; then L(f) is maximized when f is a left
continuous step function with knots at 1, - - -, x,,. Thus, letting 6; = log|[f(z;)], it is required

to maximize

log L = Z 0;, (3)

i=1
subject to —o0 < 6, <--- < #; < o0 and

Z(Z’Z - l’i_l)Ggi =1.

2 Convex Optimization

Let © denote a closed, convex subset of IR"; let ¢ :  — IR be a convex function; and
consider the problem of minimizing v over 2. About v suppose that 1 is continuously
differentiable and that limg—oc 1(6) = co. Then 1 attains its minimum value on €2; and a

necessary and sufficient condition for #° to minimize ¢ is that
(0 —0°)'Vp(0°) = 0 (4)

for all € €, where ' denotes transpose and Vi is the gradient of ¢). For the necessity,
suppose that 6° minimizes . Let 0! € Q; and let

g(t) = y[to" + (1 —1)6°]. ()

Then

o< 8050
as t — 0. For sufficiency, suppose that 6° € Q) satisfies (4); let 8 € Q; and define g by (5).
Then g is a convex function (of a real variable) for which g(0) = 1(6°) and g(1) = ¥(0").

Thus,

— (6 —0°)'V(6°)

w0 =00 = [ g0,



where now ’ denotes derivative. Now ¢ is convex, so that ¢’ is a non-decreasing function, and
g'(0) = (' — 6°)V(6°) > 0 by assumption. So, ¢'(t) > 0 for all 0 < ¢ < 1 and, therefore
P(O') —¥(0°) > 0.

The set Q is called a cone if cf € ) for all ¢ > 0 for each 6 € 2. In this case

04 (6°) = 0. (6)

If 2 is a cone and contains a linear subspace L, then there is equality in (4) for all € L. Q

is called a polyhedral cone is €1 is of the form
Q={0eR":+40>0,i=1,---,m},

where 7y, - - -, v, € IR"™ are linearly independent. The monotone regression problem Example
1 is of this form with m = n—1and~; = (0,---,—1,1,0,---,0)". If Qis a polyhedral cone and
W(x) = 2’ Az + b’z for some positive definite matrix A and a b € IR", then the maximization
problem is called a quadratic programmaing problem. There are several existing numerical
techniques for finding the minimum, notably interior point methods and primal dual basis

methods.

3 Isotonic Estimation

Monotone Regression. Consider the model described in (1). Then minimizing SS is a
quadratic programming problem; but in this special case there is a closed form solution.
Let Wy = wy + -+ + wg; let G be a piecewise linear function for which G(0) = 0 and
GWi) =y1+---+uyg for k= 1,---,n; and let G be the greatest convex minorant of G.
Here the graph of G is called the cumulative sum diagram. Next let g be the left hand
derivative of G. Then the least squares estimators are 0, = §(Wy). In symbols,

- _ d

An alternative expression is

A . WY+ e+ w5y,
0 = max min :
i<k j>k ’UJZ—F—’—U)]

The process is illustrated with n = 10, zx = k/10, u(z) = z, and ¢, ~ Normal(0, 1).

To see that § minimizes SS, it suffices to show that the sufficient condition (4) is satisfied.
This will be show that in the special case that w; = 1. In this case (6) is satisfied, and
Vip(0) = =2[yy — 01, -, yn — 0,]". So, it suffices to show that

) 0;(y; — 0;) <0 (7)
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Figure 1: The GCM and MLE

for all non-decreasing sequences 6. It is clear from the graph that y;+---+y, = Or+---+6,.
Let Af; = 0; — 6;_1. Then, summing by parts,

0;(y; — ;) = >_ A6;[G — Gy] <0,
=1 =2
so that (7) is satisfied.
Density Estimation. Now let f be a non-increasing density on (0, 00); let X1, - -, X, ~d

f be a sample from f; and let 0 = 27 < --- < x,, < 0o be the order statistics. Then the
likelihood function can be maximized, using the techniques of convex optimization. To state

the result, let
C#Hi<n: X; <t}

n

F7(t)

denote the emprical distribution function and let F be its least concave majorant. Then
the (non-parametric) maximum likelihood estimator of f is a step function with knots at

T1,- -+, 2,. The value of f(x;) is the left hand slope of F' at zy; in symbols

_ d -

f(xk) = %F’\x:mk—'



An alternative expression is

) a1
f(xk)::nnnmnax—jl——fit—)—,
i<k j>k n(x; — ;1)

where zg = 0.

x | .085 1.262 3.138 3.142 3.979 4.560 7.151 10.261

f(z) | .214 185 152 152 152 .152 0.048 .040

Time in weeks since last reboot of eight work stations; U = 4.67

Example. Let X denote the time since the last breakdown and repair of machinery. Then,

supposing that breakdowns form a renewal process, the density of X is

1

() = 21 - G(a),
where G is the distribution function of times between repairs. Observe that v = 1/f(0), and
f(x)
G(r)=1——=.
D=1 )

Clearly f is non-increasing. The data in the table below are the time since last reboot of
computers in the University of Michigan Statistics Department. Machines were only rebooted
when there was a problem.

For more detail on isotonic estimation, see Chapters 1 and 7 of [2]

4 Large Sample Properties

I will explain this for the density estimation problem. There are analogous results for the
regression problem.
Consistency. Let h denote the Hellinger metric for densities
W(f.9) = | F@) = fa@)Pde =201~ [ [/Fg(e)da).

The first result is remarkable only for its generality: If f is non-increasing then
tim A(F. ) =0 wpd.

Unfortunately, this result does not imply that f,(0) is consistent, and it isn’t. In fact, if
f(0) < oo, then )
fn(0)

——— = sup —,
F0) 7T,



I'v=FEi+ -+ E, and E1, E>, - - - are i.i.d. exponential random variable.

Limiting Distributions. Now suppose the f is positive and continuously differentiable

near ty > 0, and let
k= 14f(to) f (to)!-
Then
n3[f(to) = f(to)] = K2,

where

7 = argmax, g W (s) — %,

and W denotes a two-sided Brownian motion.

The Kiefer Wolfowitz Theorem. If f has bounded support and f' is continuous and
negative throught the support, then

n2/3 ~

The knowledge that f is decreasing does no good for estimating the distribution function.

5 Wicksell’s Problem

Suppose that Xi, X5, X3 have spherically symmetric density, but only X; and X, are ob-

served. Let
Z=X{+X;+Xs~f
Y=X{+Xl~g
Then . i )d
00 z)dz
)= L [ A
v 2z )
Let (1)d
* gly)ay
Vit) = SALSAES
(t) A
Then . J




Figure 2: The ubiased and isotonic estimates of F' for a sample of 100 from an exponential

distribution

and
F(t) =1+ % /too VAV (2).

Now suppose

Let

Y >tV Y; B t
Then V#(t) is an unbiased estimation or U for each ¢, but U¥ is not monotone as a function

of t. In fact, it has an infinite discontinuity at each Y;. Let

R

Un(t) = /OOO Vn#(s)ds
» = LCMU,

n

and



The example is adapted from [1]; [3] extend these techniques to obtain estimates of the

distribution of dark matter in nearby dwarf spheroidal galaxies.
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