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1 Some Statistical Problems

It’s best to begin with some examples.

Example 1 Consider an experimental pain reliever whose dosage x may be controlled by a

physician. If y is hours of relief, then we might suppose that y = µ(x) + ε where µ is a

non-decreasing function and ε is a random error.

Example 2 Consider a galaxy (or globular cluster), and let V = (V1, V2, V3) denote the

velocity of a randomly selected star. Suppose that the galaxy is isotropic, so that the density

of V is of the form

f(v1, v2, v3) = h(v2
1 + v2

2 + v2
3).

Often astronomers can measure radial velocities. With a proper choice of coordinate axes,

this becomes V3. The density of V3 is

f(v3) =
∫

IR2

h(v2
1 + v2

2 + v2
3)dv1dv2 = π

∫ ∞

0
h(t + v2

3)dt = π
∫ ∞

v2

3

h(t)dt

This is a symmetric function of v3 and decreasing in v3 > 0.

The examples illustrate two basic statistical problems, the monotone regression problem

and the decreasing density estimation problem. In the monotone regression problem,

yk = µ(xk) + εk, (1)
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where µ is a monotone function, ε1, · · · , εn are independent errors with mean 0 and variances

σ2/w1, · · · , σ2/wn, w1, · · · , wn > 0 are known, and σ2 may be known or unknown. In this

case it is natural to minimize

SS =
n

∑

i=1

wi(yi − θi)
2 (2)

over −∞ < θ1 ≤ θ2 · · · ≤ θn <∞.

In the density estimation problem, one observes a sample of positive random variables

X1 · · · , Xn ∼ f , were f is non-increasing on (0,∞). The likelihood function is then

L(f) =
n

∏

i=1

f(xi).

Let x1 < · · · < xn denote the order statistics; then L(f) is maximized when f is a left

continuous step function with knots at x1, · · · , xn. Thus, letting θj = log[f(xj)], it is required

to maximize

logL =
n

∑

i=1

θi, (3)

subject to −∞ < θn ≤ · · · ≤ θ1 <∞ and

n
∑

i=1

(xi − xi−1)e
θi = 1.

2 Convex Optimization

Let Ω denote a closed, convex subset of IRn; let ψ : Ω → IR be a convex function; and

consider the problem of minimizing ψ over Ω. About ψ suppose that ψ is continuously

differentiable and that lim‖θ‖→∞ ψ(θ) = ∞. Then ψ attains its minimum value on Ω; and a

necessary and sufficient condition for θo to minimize ψ is that

(θ − θo)′∇ψ(θo) ≥ 0 (4)

for all θ ∈ Ω, where ′ denotes transpose and ∇ψ is the gradient of ψ. For the necessity,

suppose that θo minimizes ψ. Let θ1 ∈ Ω; and let

g(t) = ψ[tθ1 + (1 − t)θo]. (5)

Then

0 ≤ g(t) − g(0)

t
→ (θ − θo)′∇ψ(θo)

as t → 0. For sufficiency, suppose that θo ∈ Ω satisfies (4); let θ1 ∈ Ω; and define g by (5).

Then g is a convex function (of a real variable) for which g(0) = ψ(θo) and g(1) = ψ(θ1).

Thus,

ψ(θ1) − ψ(θo) =
∫ 1

0
g′(t)dt,
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where now ′ denotes derivative. Now g is convex, so that g ′ is a non-decreasing function, and

g′(0) = (θ1 − θo)′∇ψ(θo) ≥ 0 by assumption. So, g′(t) ≥ 0 for all 0 ≤ t ≤ 1 and, therefore

ψ(θ1) − ψ(θo) ≥ 0.

The set Ω is called a cone if cθ ∈ Ω for all c > 0 for each θ ∈ Ω. In this case

θo′∇ψ(θo) = 0. (6)

If Ω is a cone and contains a linear subspace L, then there is equality in (4) for all θ ∈ L. Ω

is called a polyhedral cone is Ω is of the form

Ω = {θ ∈ IRn : γ′iθ ≥ 0, i = 1, · · · , m},

where γ1, · · · , γm ∈ IRn are linearly independent. The monotone regression problem Example

1 is of this form withm = n−1 and γi = (0, · · · ,−1, 1, 0, · · · , 0)′. If Ω is a polyhedral cone and

ψ(x) = x′Ax+ b′x for some positive definite matrix A and a b ∈ IRn, then the maximization

problem is called a quadratic programming problem. There are several existing numerical

techniques for finding the minimum, notably interior point methods and primal dual basis

methods.

3 Isotonic Estimation

Monotone Regression. Consider the model described in (1). Then minimizing SS is a

quadratic programming problem; but in this special case there is a closed form solution.

Let Wk = w1 + · · · + wk; let G be a piecewise linear function for which G(0) = 0 and

G(Wk) = y1 + · · · + yk for k = 1, · · · , n; and let G̃ be the greatest convex minorant of G.

Here the graph of G is called the cumulative sum diagram. Next let g̃ be the left hand

derivative of G̃. Then the least squares estimators are θ̂k = g̃(Wk). In symbols,

θ̂k = g̃(Wk) =
d

dw
[GCM of CSD]|w=Wk

.

An alternative expression is

θ̂k = max
i≤k

min
j≥k

wiy1 + · · ·+ wjyj

wi + · · ·+ wj
.

The process is illustrated with n = 10, xk = k/10, µ(x) = x, and εk ∼ Normal(0, 1).

To see that θ̂ minimizes SS, it suffices to show that the sufficient condition (4) is satisfied.

This will be show that in the special case that wi = 1. In this case (6) is satisfied, and

∇ψ(θ) = −2[y1 − θ1, · · · , yn − θn]′. So, it suffices to show that

n
∑

j=1

θj(yj − θ̂j) ≤ 0 (7)
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Figure 1: The GCM and MLE

for all non-decreasing sequences θ. It is clear from the graph that y1 + · · ·+yn = θ̂1 + · · ·+ θ̂n.

Let ∆θj = θj − θj−1. Then, summing by parts,

n
∑

j=1

θj(yj − θ̂j) =
n

∑

j=2

∆θj[G̃k −Gk] ≤ 0,

so that (7) is satisfied.

Density Estimation. Now let f be a non-increasing density on (0,∞); let X1, · · · , Xn ∼ind

f be a sample from f ; and let 0 = x1 < · · · < xn < ∞ be the order statistics. Then the

likelihood function can be maximized, using the techniques of convex optimization. To state

the result, let

F#(t) =
#{i ≤ n : Xi ≤ t}

n

denote the emprical distribution function and let F̃ be its least concave majorant. Then

the (non-parametric) maximum likelihood estimator of f is a step function with knots at

x1, · · · , xn. The value of f(xk) is the left hand slope of F̃ at xk; in symbols

f̃(xk) =
d

dx
F̃|x=xk−.
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An alternative expression is

f̃(xk) = min
i≤k

max
j≥k

(j − i+ 1)

n(xj − xi−1)
,

where x0 = 0.

x .585 1.262 3.138 3.142 3.979 4.560 7.151 10.261

f̃(x) .214 .185 .152 .152 .152 .152 0.048 .040

Time in weeks since last reboot of eight work stations; ν̂ = 4.67

Example. Let X denote the time since the last breakdown and repair of machinery. Then,

supposing that breakdowns form a renewal process, the density of X is

f(x) =
1

ν
[1 −G(x)],

where G is the distribution function of times between repairs. Observe that ν = 1/f(0), and

G(x) = 1 − f(x)

f(0)
.

Clearly f is non-increasing. The data in the table below are the time since last reboot of

computers in the University of Michigan Statistics Department. Machines were only rebooted

when there was a problem.

For more detail on isotonic estimation, see Chapters 1 and 7 of [2]

4 Large Sample Properties

I will explain this for the density estimation problem. There are analogous results for the

regression problem.

Consistency. Let h denote the Hellinger metric for densities

h2(f, g) =
∫ ∞

−∞
[
√

f(x) −
√

g(x)]2dx = 2[1 −
∫ ∞

−∞
[
√

f(x)g(x)dx].

The first result is remarkable only for its generality: If f is non-increasing then

lim
n→∞

h(f, f̃n) = 0 w.p.1.

Unfortunately, this result does not imply that f̃n(0) is consistent, and it isn’t. In fact, if

f(0) <∞, then

f̃n(0)

f(0)
⇒ sup

k≥1

k

Γk

,
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Γk = E1 + · · ·+ Ek and E1, E2, · · · are i.i.d. exponential random variable.

Limiting Distributions. Now suppose the f is positive and continuously differentiable

near t0 > 0, and let

κ = |4f(t0)f
′(t0)|.

Then

n
1

3 [f̃(t0) − f(t0)] ⇒ κZ,

where

Z = argmaxs∈IRW (s) − s2,

and W denotes a two-sided Brownian motion.

The Kiefer Wolfowitz Theorem. If f has bounded support and f ′ is continuous and

negative throught the support, then

limn→ ∞ n2/3

log(n)
sup

t
|F̃n(t) − F#

n (t)| = 0.

The knowledge that f is decreasing does no good for estimating the distribution function.

5 Wicksell’s Problem

Suppose that X1, X2, X3 have spherically symmetric density, but only X1 and X2 are ob-

served. Let

Z = X2
1 +X2

2 +X2
3 ∼ f

Y = X2
1 +X2

2 ∼ g

Then

g(y) =
1

2

∫ ∞

y

f(z)dz
√

z(z − y)
.

Let

V (t) =
∫ ∞

t

g(y)dy√
y − t

.

Then

V (t) = · · · = 1

2
π

∫ ∞

t

f(z)dz√
z

.

So, U is a decreasing function, and

f(t) = − 2

π
V ′(t)
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Figure 2: The ubiased and isotonic estimates of F for a sample of 100 from an exponential

distribution

and

F (t) = 1 +
2

π

∫ ∞

t

√
zdV (z).

Now suppose

Y1, · · · , Yn ∼ g.

Let

V #
n (t) =

∑

i:Yi>t

1√
Yi − t

.

Then V #
n (t) is an unbiased estimation or U for each t, but U#

n is not monotone as a function

of t. In fact, it has an infinite discontinuity at each Yi. Let

Un(t) =
∫ ∞

0
V n#(s)ds

Ũn = LCMUn

V̂n(t) = Ũ ′
n(t),

and

F̂n(t) = 1 +
2

π

∫ ∞

t

√
zdV̂n(z).
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The example is adapted from [1]; [3] extend these techniques to obtain estimates of the

distribution of dark matter in nearby dwarf spheroidal galaxies.
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