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What is an Upper Limit?

Vinay Kashyap

1. Introduction

There is a tremendous amount of confusion in the literaturebaut what an Upper Limit
is, how it is de ned, and what its value should be. Astronomer seem to have a distinctly
di erent idea of what it is than statisticians. For astronomers, it is inextricably tied in with
the concept of detection. It comes into play when we look at thdata, nd nothing where
we expected something to be, and ask what is the brightest ththe source could be. That
is, we seek the upper limit to the intensity that an undetectd source can have without being
detected.

The confusion that has arisen, generally in the past decadeppears to be due to a
misidenti cation of the upper con dence bound on the sourcéntensity parameter with the
above concept of an upper limit. A number of studies have beeonducted on ensuring that
the upper con dence bound remains continuous and does notueempty intervals as the
source intensity goes to zero (Kraft et al. 1991, Marshall 92, Feldman & Cousins 1998,
Mandelkern 2002). But rather, according to the argument sedut below (seex3), the upper
limit is an estimate not a bound, and the continuity must be with respect to the maimum
likelihood estimates (MLES) of the source intensities of dectable sources.

The confusion has been compounded in the past decade for astsmers because of some
innovations in how sources are detected. Previously, all téetions were carried out on the
basis of whether a source ux could be said to be non-zero atnse con dence level, usually
3 (e.g., Harnden et al. 1984, Kashyap et al. 1994). Thus, thetéetion threshold was a ux-
based one, and it was consequently easy to convert this valwean upper limit and maintain
ux continuity and internal consistency (seex2 below). This is the basis of the popular
X-ray source detection algorithmcelldetect (see Appendix A). This is however not a very
powerful criterion, i.e., it fails to detect many sources tht are apparent to the eye simply
because the formal statistical error on the ux is too largeA number of simulation studies
were carried out to calibrate a suitable threshold value to@ply by counting the number
of false detections obtained by raising or lowering the thskold (Dobrzycki et al. 2000,
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Calderwood et al. 2001; see also theéhandra Detect Manual'), thus moving away from a
strictly ux-based detection criterion to a sensitivity criterion. At the same time, new wavelet
based algorithms were being developefgwdetect, Damiani et al. 1997;zhdetect , Vikhlinin
et al. 1997;wavdetect, Freeman et al. 2002; etc.) that applied a strictly hypothds-test type
of criteria to detect sources. All these new methods have neopower than the ux-based
detection methods and allow detection of sources at much lewintensities. On the other
hand, the value of the ux of these weak, but detected, soursecannot be determined with
accuracy, and the lower con dence bounds on the source insties quite often overlap zero.
In such cases, it has been tempting to adopt the upper con dea bound on the source
intensity as the upper limit. However, as we demonstrate balv (seex3), this is an overly
conservative limit and furthermore is neither continuous tathe detection threshold, nor
internally consistent.

Below, we rst set out the requirements that an upper limit must satisfy, in x2. Then,
in X3, we set up an idealized experiment that highlights the vasus quantities that are being
used as upper limits. We provide some example calculations tlustrate the di erences
between the di erent methods inx4. A detailed description of the ux-based source detection
method celldetect (ree Idetect ) is given in Appendix A.

2. Requirements

At this stage, it is worthwhile to list the criteria that an up per limit must satisfy. Note
that these are di erent from the criteria listed by Mandelkan (2002), which are appropriate
for con dence intervals (in particular, coverage is not re&vant here). An upper limit must
be

1. a byproduct of the detection processit is meaningless outside the context of a detection
threshold, and its value consequently depends on the critaradopted for detection;
and a more powerful detection algorithm will naturally prodice a smaller upper limit
than a less powerful one (e.g., all sources have a trivial upplimit of 1 , but with
such a criterion, no sources would be detected).

2. continuous at the detection threshold:we expect that all sources with su cient counts
to trigger the detection threshold will be detected with estmated intensities that lie
above the putative upper limit; and conversely, estimatedniensities of sources with
counts that do not trigger detection would lie below the vale of the upper limit. Thus,

Ihttp://cxc.harvard.edu/ciao/download/doc/detect _manual/cell _false.html
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we can identify the value of the upper limit with the estimatel intensity of the faintest
source that would be detected.

3. internally consistent: there should be no sources detected with intensities lowenan
the putative upper limit, because by de nition, the upper limit is the largest intensity
that a source can have without being detected.

3. Gedanken Experiment

The various quantities designated as Upper Limits at varicatimes can be understood
with a thought experiment. Suppose we have a number of souscef various intensities that
are being observed by an idealized detector. Further suppothat the background does not
change at all for any of these observations. We can computeetisource intensity and the
error on it as described in Appendix A. These are plotted in lgure 1 for two cases,

{ high background caseNp, =150, =10, fq=fy=1,ie.,, B=15 14

fp=1,1.e., B=15 01

{ low background caseNpy =150, =100, fq

In the absence of a detection threshold, we can compute theusce intensity S and the
error on it g down to the limit?> Ng! 0. The computed MLEs ofS are shown in Figure 1
as the open circles, and the 3error bars as the yellow vertical bars centered o8. (The
1 ranges are denoted by the thicker vertical bars.) The upperoa dence boundS + 3 s,
denoted by the red dashed curve, is the quantity generally éaiti ed with the upper limit in
statistical literature and also in some astronomical liteature. Sometimes astronomers also
use the quantity 3 s as the upper limit, and this is denoted by the blue dot-dasheline.®

Now, for the sake of specicity, we adoptS= s 3 as the detection criterion. The
threshold for detection occurs whers = 3 g, i.e., the locus of the ML estimator ofS inter-
sects the locus of 35 curve. All observationsNg that occur to the right of this intersection

2It is necessary to use the proper Poisson likelihood for lowaunts, but for the sake of simplicity, we
compute all quantities in the Gaussian approximation; the aguments made below are not a ected by this
assumption. Note that in the high background case, the uppercon dence bound reaches 0 foNy4 5,
leading to the classical problem of the empty interval that is addressed by Feldman & Cousins (1998) and
Mandelkern (2002).

3|s it fair to characterize the Feldman & Cousins and the Manddkern \uni ed" intervals as ones that
start out as S+ 3 g for high counts and transition to 3 s for low counts?
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point in Figure 1 will be detected, and all observations to th left will remain non-detections.
We identify the value of S that corresponds to this intersection point with the upper imit,
SuL (denoted by the green horizontal solid line). Indeed, for wetected sources, the source
intensity must be less than the intensity of the last detect# source, i.e.,

Snon detections < SUL : (1)

The quantities of interest in the problem are therefore the ME of S for detected sources
(green open symbols) and the upper limi§y, for undetected sources (green solid horizontal
line).

From the above, it is clear that the Upper Limit is not a bound, but rather an esti-
mate, a construction of the problem which itself can be assigd upper and lower con dence
bounds. How to de ne these bounds is a di cult question. If a surce is at the threshold
of detection, i.e.,S = Sy, then invariably the probability that this source will be detected
in some observation i%, unless the posterior probability distribution of the souce intensity
P(SjNg; Npkg), is highly skewed. AsNg ! 0, this distribution does become skewed. Is it
sensible to expect that the Upper Limit become rmer in thisimit? That is, does the upper
bound on the Upper Limit shrink? This requires that the numbe of counts observed in the
source regionNg, be a part of the calculation, even though it is not taken intaaccount when
SuL is determined. How should the detection probability, or th&'ype Il error, be taken into
account?

4. Examples

In order to aid intuition, and also to make explicit the di erences between the various
de nitions of the upper limit, we compute the values as obtaied using them and list them
in Table 1. The methods we consider are:

1. Background-marginalized Poisson (BmP)Equal-tail and zero-bounded 99.7% con -
dence bounds determined from the posterior probability disbution for source inten-
sity, marginalized over background; this is based on the fmwulation derived by van
Dyk et al. (2001), and is similar to the concept of upper limg espoused by Kraft et
al. (1991).

4This is my term for a con dence interval that always has the lower bound at O; there is no guarantee
that the mode and the mean would be included in this interval unless the interval is for a high con dence
level.
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2. Feldman-Cousins uni ed band (FC):Uni ed 99.7% con dence bounds as derived by
Feldman & Cousins (1998); it matches the equal-tail bound®i high counts and tran-
sitions to the zero-bounded bounds for low counts.

3. Signal-to-noise (SNR)A ux-dependent detection threshold, as implemented ircelldetect
(see Appendix A); we choose SNR=3 as the detection criterion

4. Classical upper bound (CUB):The upper bound, S + 3 g, the red dashed line in
Figure 1.

5. Source Error (SE):The value ofS that is required to exceed the source error, 3, the
blue dot-dashed line in Figure 1.

6. Background p-value (pBKG): The detection threshold is set based on the probability
(p = 0:997) of not being able to obtain a certain number of counts as actuation
from the background (Pease et al. 2005). The uncertainty inhe value of the upper
limit is estimated here by carrying out Monte Carlo simulatons with the background
Npkg Sampled from a Poisson distribution.

These methods are applied to the following three typical cas:

Case | Moderate source in high background

Ag=1;A,=10; =10;Npg=150;Ngy =38
Case Il Weak source in low background

Aq=1;A,=100; =100;Npg=150;Ny4=38

Case Il No source in low background

Ad = 1;Ab = 100, = 100, kag = 150, Nd =2

APPENDIX
A. Cell Detection

Cell detection (Harnden et al. 1984) is a standard method obsrce detection in X-ray
astronomy. It was originally developed for use with the rstX-ray imaging telescope, the
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Table 1: Upper Limits by di erent methods

Method Case | Case Il Case llI
BmP (equal-tail) [7:3;451] [0:96; 1875] [@001 8:88]
BmP (zero-bound) [Q435] [G,17:9] [G 8:61]
FC  [7:94;44:56] [086;18.44] [08:79]
SNR < 25 < 165 < 165
cuB < 472 < 185 < 86
SE < 242 < 12 <81

pBKG < (125 1.7) < (44 025) < (44 0:25)

Einstein Observatory (namedldetect , for Local Detect). In essence, it involves compar-
ing the counts in a \detect cell" centered on the pixel of inteest with counts in a larger
\background cell", also centered on the same pixel, calciiag an estimate of the source
intensity and its associated error, and using the ratio of # source intensity and its error,
the so-called signal-to-noise ratio (SNR), as the criteniofor detection. In practice, the data
image is convolved with a 3x3 detect kernel and a 5x5 backgral kernel and the SNR is
computed at each pixel; a threshold of SNR=3 is used to decidgon the existence of a
source.

Suppose thatN4 and Ny, counts are observed in a detect cell of are® and an overlap-
ping background cell of area\, respectively. We assume thafy Ap. Writing the observed
counts as a function of the source intensity and background intensityB,

Ng = f4S+B
N, = xS+ B; (A1)

wherefy and f, are the fractions of the point spread function that are inclded within the
detect cell and background cell respectively, and = ’2—3 is the ratio of the areas of the

background and detect cells. Writing
Npkg = Np  Ng;

and solving separately folS and B, we nd

( 1)Ng Npyg
L
(fa fu)Ng fgNpkg |
fq fp '

S =

B (A2)
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The errors on the intensities are computed by propagating therrors by the method of
moments,

a 2 2 2
( 1) Ng N kg
IS =
f f
! (fa (:b)z ﬁb f& &
= d bkg; (A3)
fq fo

where the Gehrels approximation (Gehrels 1986) is usuallylapted for the counts errors,

v = NTOTB+1
A source is considered detected if its ux is non-zero at the 3level, i.e.,
SNR ES 3; (A4)
which leads to the natural estimate of an upper limit, as thatvalue of S for which Ny and
N, are such thatSNR = 3 is achieved:

UL  Sjsnr=3 (A5)
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Fig. 1.|] A thought experiment to determine upper limits. The estimated source intensity
S is plotted for various values of the counts observed in the gt cell Nyg. Upper panel: For
high background counts,B = 15. Lower panel: For low background counts,B = 1:5. The
open circles are the maximum likelihood estimates of the swe intensity S, and the yellow
vertical lines denote the error bandS 3 5. The 1 error band is denoted by the thick
vertical lines. The red dashed line represents the upper 9% con dence bound orS, and
is the quantity identi ed in statistics literature with the upper limit. The blue dot-dashed
line is the quantity 3 s, used in some astronomical studies as the upper limit. The egn
horizontal solid line is the upper limit to the intensities ¢ undetected sources, and along
with the MLEs of S (green open circles), constitute the measuerements of irgst in the
dataset.



