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Consider the model X ∼ Poisson(ψ + β), where β is the known expected count from
background and ψ is the unknown expected count from source. In source detection, we are
interested in the basic question of whether ψ > 0.

A Basic Power-Based Method.

1. Suppose ψ = 0 and X ∼ Poisson(β). Under this assumption, let x? be the smallest value
such that

Pr(X ≤ x?|β) ≥ 95%.

Figure 1 illustrates x? as a function of β.

2. If X > x?, we conclude that ψ > 0 and that we have detected a source.

3. If X ≤ x? we do not detect a source but may compute an upper limit for ψ. For a given
x?, we can compute

Pr(X > x?|ψ + β)

as a function of ψ.

4. Let ψ? be the value of ψ so that

Pr(X > x?|ψ? + β) = 95%.

Notice that ψ? does not depend on the observed counts. We are only using the fact that
X ≤ x?.

5. For ψ > ψ? we are likely to detect the source and conclude that ψ > 0. For a non-
detection, we can call ψ? an upper limit.

Example: Suppose β = 2, then the 95% detection thresh hold is x∗ = 5, see Figure 1. Thus,
we would conclude there is a source if we observe more than 5 photons. This is the detection
thresh hold with probability of a Type I error (false positive) less than or equal to 5%. In this
case the probability of a Type I error is 1.7%, so 5 is also the 98.3% detection thresh hold.

Figure 2 plots the power of the test as a function of the source intensity, ψ. We have a 95%
or greater chance of detecting a source with ψ ≥ 8.55. We call this the 95% detection upper
limit for the 95% (or 98.3%) detection thresh hold. Suppose, we observe X = 3 photons, and
cannot conclude there is a source. Our detection upper limit for ψ is 8.55. Notice we would

have the same upper limit for any X ≤ 5.

Figure 3 gives more details of how the probability of detection depends on the probability
of a Type I error (false positive) and how the probability of detection can be used to compute
detection upper limits with various levels. Notice that as the probability of a Type I error
decreases or the level of the detection upper limit increases the detection limit itself increases.
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Detection Thresh holds are 3, 4, 5, 6, and 7, respectively.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SD50 = 50% Detection Upper Limits

psi

po
w

er
=

pr
ob

(d
et

ec
tio

n)

1.65 2.65 3.65 4.65 5.65

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

95% Detection Upper Limits

psi

po
w

er
=

pr
ob

(d
et

ec
tio

n)

5.75 7.15 8.53 9.95 11.15

8 10 12 14 160.
95

0.
97

0.
99

99.7% Detection Upper Limits

psi

po
w

er
=

pr
ob

(d
et

ec
tio

n)

9.64 11.32 12.88 14.44 15.94

Figure 3:
3



Significance Tests and Confidence Intervals. Generalizing the above discussion, we
might in principle be interested in accepting or dismissing any value of ψ, rather than just
the value ψ = 0. Suppose we are particularly interested in the possibility that ψ = ψ0. If we
assume ψ = ψ0 and X ∼ Poisson(ψ0 + β), we can compute x?

U
(ψ0), the smallest value such

that
Pr(X ≤ x?

U
(ψ0)|ψ0 + β) ≥ 95%.

We use the subscript ‘U’ because x?

U
(ψ0) is a 95% upper bound for X . We can decide between

the possibilities that ψ ≤ ψ0 and ψ > ψ0 as follows:

• If X > x?(ψ0), we conclude that ψ > ψ0.

• If X ≤ x?(ψ0) we cannot dismiss the possibility that ψ = ψ0 (or less than ψ0).

This is a significance test for testing the “null hypothesis” that ψ = ψ0. We can use this to
generate a confidence interval by setting IL(X) = {ψ : X ≤ x?(ψ)}. This is the set of values
of ψ that we cannot dismiss, the plausible values of ψ. WE now use the subscript ‘L’, because
as we shall see, this interval generates a lower bound for ψ.

Example: Again, suppose β = 2, then the 95% detection thresh hold is x∗ = 5. Figure 4
gives the upper thresh hold as a function of ψ0, i.e., x?

U
(ψ0). Suppose, we observe X = 7

photons, and conclude there is a source. As Figure 4 illustrates, X = 7 ≤ x?

U
(ψ) for and

ψ ≥ 1.35., the resulting confidence interval is [1.35,∞). On the other hand, if we had observed
only X = 3 photons, then X ≤ x?(ψ) for all non-negative ψ, and the resulting confidence
interval is simply [0,∞).

This is a “one-sided” confidence interval: it provides a lower limit, but no upper limit for
ψ. This type of interval is ideal for source detection. If the lower-limit is greater than zero,
we have found a source. If we have not found a source, however, this interval will always be
of the form [0,∞) and an upper limit or a “two-sided” interval is more informative. Next we
describe how to compute upper limits based on the “other” one-sided interval.

A Basic Significance-Test Based Method.

1. Suppose ψ = ψ0 and X ∼ Poisson(β + ψ0). Under this assumption, let x?

L
(ψ0) be the

largest value such that
Pr(X ≥ x?

L
(ψ0)|ψ0 + β) ≥ 95%.

2. If X < x?

L
(ψ0), we conclude that ψ < ψ0.

3. If X ≥ x?

L
(ψ0) we cannot dismiss the possibility that ψ = ψ0.

4. We can construct a confidence interval as IU(X) = {ψ : X ≥ x?

L
(ψ)}. These are the

values of ψ that we cannot dismiss, the plausible values of ψ.

5. If X > x?

U
(0), we conclude ψ > 0 and that we have detected a source. In this case zero

is not in IL(X) and IL(X) provides a lower limit for ψ, that is greater than zero.

6. If X ≤ x?

U
(0), we have not detected a source, zero is contained in IL(X) and the largest

value in IU(X) is an upper limit for ψ.

Example: Again, suppose β = 2 and that the 95% detection thresh hold is x∗ = 5. Figure 5
gives the lower thresh hold as a function of ψ0, i.e., x?

L
(ψ0). Suppose, we observe X = 3

photons, and cannot conclude there is a source. Figure 5 illustrates the values of ψ such that
3 ≥ x?

L
(ψ), this is the confidence interval that provides the upper limit for ψ, i.e., [0, 5.75].
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A Better Strategy: Two-Sided Tests and Intervals. The basic strategy outlined above
over-estimate confidence in the upper bounds. First computing a lower bound and then com-
puting an upper bound only if the lower bound is zero in a manner that does not account for
conditional nature of the computation will result in upper bounds that are too low. There are
two possible ways to avoid this.

1. A single two-sided interval can be computed. These intervals compute an upper bond
and a lower bound coherently and simultaneously. It should be emphasized, however,
that these intervals will have less power to detect weak sources. This power exchanged
for an upper bound.

2. A upper bound can be computed accounting for the fact that an uninformative lower has
already been computed. bound. In this way we avoid sacrificing detection power, but
will have higher upper limits. (Indeed, the obvious upper limit in this case is +∞, but
perhaps we can do better.)

Here, I’ll just describe the second strategy.

A Basic Two-Sided Significance-Test Based Method.

1. Suppose ψ = ψ0 and X ∼ Poisson(β + ψ0). Under this assumption, let (x†
L
(ψ0), x

†
U
(ψ0))

be the shortest interval such that

Pr(x†
L
(ψ0) ≤ X ≤ x

†
U
(ψ0)|ψ0 + β) ≥ 95%.

2. If X < x
†
L
(ψ0), we conclude that ψ < ψ0.

3. If X > x
†
U
(ψ0), we conclude that ψ > ψ0.

4. If x†
L
(ψ0) ≤ X ≤ x

†
U
(ψ0), we cannot dismiss the possibility that ψ = ψ0.

5. We can construct a confidence interval as I2(X) = {ψ : x†
L
(ψ) ≤ X ≤ x

†
U
(ψ)}. These are

the values of ψ that we cannot dismiss, the plausible values of ψ.

6. If X > x
†
U
(0), we conclude ψ > 0 and that we have detected a source. In this case zero

is not in I2(X) and I2(X) provides a lower and upper limits for ψ, that are both greater

than zero. (Because x†
U
(0) ≥ x?

U
(0), we have less power to detect sources than when we

compute a simple lower bound.)

7. If X ≤ x
†
U
(0), we have not detected a source, zero is contained in I2(X) and the largest

value in I2(X) is an upper limit for ψ.

Using the shortest interval in Step 1 gives us the shortest two-sided Confidence Interval
and balances in some sense the power for the upper and lower limits. If we want more power
for the lower limit (i.e., the detection) than for the upper limit, we may want to use different
interval.

The confidence interval computed in Step 5 can be replaced with any other interval (e.g., a
Bayesian interval computed with a Jeffrey’s prior). Such a substitution may effect the frequency
properties of the procedure, but may be necessary in the presence of nuisance parameters.
Likewise the basic significance test that we use here to generate a confidence interval can be
replaced by any appropriate test (e.g., a properly calibrated likelihood ratio test). Again, this
substitution can effect the frequency properties of the procedure, but may be necessary in more
complex problems.
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