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The Frequentist Outlook

Probabilities for hypotheses are meaningless because
hypotheses are not “random variables.”

Data are random, so only probabilities for data can appear in
calculations.

Strength of inference is cast in terms of long-run behavior of
procedures, averaged over data realizations:

² How far is µ̂(D ) from true µ, on average (over D)?

² How often does interval ¢( D ) contain true µ, on average?

² How often am I wrong if I reject a model when S(D) is above Sc?

What is good for the long run
is good for the case at hand.



The Bayesian Outlook

Quantify information about the case at hand as completely
and consistently as possible.

No explicit regard is given to long run performance.

But a result that claims to fully use the information in each
case should behave well in the long run.

What does the case at hand tell us
about what might occur in the long run?

Is what is good for the case at hand
also good for the long run?
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Prediction and Inference w/ Frequencies

Frequencies are relevant when modeling repeated trials, or
repeated sampling from a population or ensemble.

Frequencies are observables:

² When available, can be used to infer probabilities for next
trial

² When unavailable, can be predicted



Some Frequency Models

Consider binary experiments. Trial t produces result r t (0 or
1), with probability a that may be known or unknown.

Frequency of 1's in N trials:

f =
1
N

X

t

r t =
n
N

M 1: independent trials, a a known constant; predict f
M 2: a is an unknown constant; f is observed; infer a
M 3: p(r1; r2 : : : rN jM 3) known (dependence!); predict f
M 4: Parallel experiments on similar systems produce f f i g;
infer f ai g



Independent Trials

M 1: a is a known constant; predict f

Use the binomial dist'n: f = a §
p

a(1 ¡ a)=N

Special case of (weak) law of large numbers

M 2: a is an unknown constant; f is observed; infer a

Our binary outcome example from Lecture 1—the �rst
use of Bayes's theorem: a = f §

p
n=N



Dependent Trials

M 3: p(r1; r2 : : : rN jM 3) known; predict f

Can show that:

hf i =
1
N

X

t

p(r t jM 3)

where p(r1jM 3) =
X

r 2

¢ ¢ ¢
X

r N

p(r1; r2 : : : jM 3)

Expected frequency of outcome in many trials =
average probability for outcome across trials.

But can also show that ¾f needn't converge to 0. The
actual frequency may differ signi�cantly from its
expectation even after many trials.



Population of Related Systems
M 4 : Parallel experiments on similar systems produce f f i g; infer f ai g

Example: 1977 Batting Averages (Efron & Morris)
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Green estimates are deliberately biased from observed frequencies—and predict the future
better! (“Shrinkage”)



Probability and Frequency

Probabilities and frequencies in repeated experiments are
simply related only in the simplest settings (independence,
small dimension).

Otherwise, the relationships are subtle. A formalism that
distinguishes them from the outset is particularly valuable for
exploring this. E.g., shrinkage is explored via hierarchical and
empirical Bayes.
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Bayesian Calibration

Credible region ¢( D) with probability P :

P =
Z

¢( D )
dµ p(µjI )

p(D jµ; I )
p(D jI )

What fraction of the time, Q, will the true µ be in ¢( D)?

1. Draw µ from p(µjI )
2. Simulate data from p(Djµ; I )
3. Calculate ¢( D) and see if µ 2 ¢( D)

Q =
Z

dµ p(µjI )
Z

dD p(Djµ; I ) [µ 2 ¢( D)]



Q =
Z

dµ p(µjI )
Z

dD p(Djµ; I ) [µ 2 ¢( D)]

Note appearance of p(µ; DjI ) = p(µjD; I )p(D jI ):

Q =
Z

dD
Z

dµ p(µjD; I ) p(D jI ) [µ 2 ¢( D)]

=
Z

dD p(DjI )
Z

¢( D )
dµ p(µjD; I )

= P
Z

dD p(DjI )

= P

Bayesian inferences are “calibrated.”
Calibration is with respect to choice of prior & L .
This is useful for testing Bayesian computer codes.



Frequentist Coverage and Con�dence

Coverage:

Coverage for a rule ±(D) specifying a parameter interval
based on the data:

C±(µ) =
Z

dD p(Djµ; I ) [µ 2 ±(D)]

If C(µ) = P, a constant, ±(D) is a strict con�dence region
with con�dence level P.



Conservative con�dence regions:

It is hard to �nd ±(D) giving constant C(µ); very hard with
nuisance parameters, and impossible with discrete data.

Reported con�dence level ´ minµ C±(µ).

This remains problematic for discrete data. E.g., binomial
dist'n: If a = 0, then n = 0, always. Any ±(n) will just give
one particular interval, ±(0), for all trials and thus must
have C(0) = 0 or 1.



Average coverage:

Intuition suggests reporting some kind of average
performance:

R
dµ f (µ)C±(µ)

Recall the Bayesian calibration condition:

P =
Z

dµ p(µjI )
Z

dD p(Djµ; I ) [µ 2 ¢( D)]

=
Z

dµ p(µjI ) C±(µ)

provided we take ±(D) = ¢( D).

² If C¢ (µ) = P, the credible region is a strict con�dence
region.

² Otherwise, the credible region's probability content
accounts for a priori uncertainty in µ, via the prior.



Coverage for Binomial Estimation

Binomial CR coverage, N = 50

Berger & Bayarri 2004

But the locations and sizes of the “jitter” vary with N .



Parameter & Sample Averaged Coverage

It may be more relevant to report coverage for situations “like” the
observed one, but not identical to it—nearby parameter values, or similar
sample size. ! average coverage is relevant:

Avg. over nearby µ Avg. over similar N

Berger & Bayarri

The actual uncertainties in real situations suggest some kind of averaging
is more relevant, and that conservative coverage is too conservative.



Calibration for Bayesian Model Comparison

Assign prior probabilities to NM different models.

Choose as the true model that with the highest posterior probability, but
only if the probability exceeds Pcrit .

Iterate via Monte Carlo:

² 1.Choose a model by sampling from the model prior.

² 2.Choose parameters for that model by sampling from the parameter
prior pdf.

² 3.Sample data from that model's sampling distribution conditioned on
the chosen parameters.

² 4.Calculate the posteriors for all the models; choose the most
probable if its P > P crit .

) Will be correct ¸ 100Pcrit % of the time that we reach a conclusion in
the Monte Carlo experiment.



Robustness to model prior:

What if model frequencies 6= model priors?

Choose between two models based on the Bayes factor, B (assumes
equal freq.), but let them occur with nonequal frequencies, f 1 and f 2.
Let ° be the max prior freq. ratio for a model:

° = max
·

f 1

f 2
;

f 2

f 1

¸

Fraction of time a correct conclusion is made if we require B > B crit

or B < 1=Bcrit is

Q >
1

1 + °
B crit

E.g., if Bcrit = 100:

² Correct ¸ 99% if ° = 1

² Correct ¸ 91% if ° = 9



A Worry: Incorrect Models

What if none of the models is “true”?

Comfort from experience: Rarely are statistical models precisely true, yet
standard models have proved themselves adequate in applications.

Comfort from probabilists: Studies of consistency in the framework of
nonparametric Bayesian inference show “good priors are those that are
approximately right for most densities; parametric priors [e.g., histograms]
are often good enough” (Lavine 1994). But there remains some
controversy about this; if “big” models are required to �t th e data, expert
care is required.

One should worry somewhat, but there is not yet any theory providing a
consistent, quantitative “model failure alert” (Bayesian or frequentist).



Bayesian Consistency & Convergence

Parameter Estimation:

² Estimates are consistent if the prior doesn't exclude the
true value.

² Credible regions found with �at priors are typically
con�dence regions to O(n¡ 1=2).

² Using standard nonuniform “reference” priors can
improve their performance to O(n¡ 1).

² For handling nuisance parameters, regions based on
marginal likelihoods have superior long-run performance
to regions found with conventional frequentist methods
like pro�le likelihood. Competitive frequentist methods
require conditioning on ancillaries and correction factors
that mimic marginalization.



Model Comparison:

² Model comparison is asymptotically consistent. Popular
frequentist procedures (e.g., Â2 test, asymptotic likelihood
ratio (¢ Â2), AIC) are not.

² For separate (not nested) models, the posterior
probability for the true model converges to 1 exponentially
quickly.

² When selecting between more than 2 models, carrying
out multiple frequentist signi�cance tests can give
misleading results. Bayes factors continue to function
well.



Summary

Parametric Bayesian methods are typically excellent
frequentist methods!

Not too surprising—methods that claim to be optimal for each
individual case should be good in the long run, too.



Key Ideas

² Connections between probability and frequency can be
subtle

² Bayesian results are calibrated (w.r.t. modeling
assumptions)

² Parametric Bayesian methods are good frequentist
methods
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