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Scientific Method

Scientists argue!

Argument = Collection of statements comprising an act of
reasoning from premises to a conclusion

A key goal: Explain or predict quantitative measurements
Framework: Mathematical modeling

— Sclence uses rational argument to construct and appraise
mathematical models for measurements



Mathematical Models

A model (in physics) is a representation of structure in a
physical system and/or its properties. (Hestenes)

TRANSLATION &
INTERPRETATION

REAL < >

WORLD

MATHEMATICAL

WORLD

A model is a surrogate

The model is not the modeled system! It “stands in” for a
particular purpose, and is subject to revision.

A model is an idealization

A model is a caricature of the system being modeled
(Kac). It focuses on a subset of system properties of
Interest.



A model is an abstraction

Models identify common features of different things so

that general ideas can be created and applied to different
situations.

We seek a mathematical model for quantifying
uncertainty—it will share these characteristics with
physical models.

Asides

Theories are frameworks guiding model construction (laws,
principals).

Physics as modeling is a leading school of thought in physics
education research; e.g., htt p: / / nodel i ng. | a. asu. edu/



Data Analysis
Building & Appraising Arguments Using Data

Efficiently and accurately
~___ represent information

Generate hypotheses;
qualitative assessment

Quantify uncertainty
in inferences

Statistical inference is but one of several interacting modes of
analyzing data.



Bayesian Statistical Inference

A different approach to all statistical inference problems
(I.e., not just another method in the list: BLUE, maximum

likelihood, y* testing, ANOVA, survival analysis . . . )

Foundation: Use probability theory to quantify the
strength of arguments (i.e., a more abstract view than
restricting PT to describe variability in repeated “random”
experiments)

Focuses on the structure of models rather than properties
of procedures



An Emerging Subdiscipline

Bayesian papers in Astronomy and
Astronomy, Physics & Geophysics (NASA ADS)
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Logic—Some Essentials

“Logic can be defined as the analysis and appraisal of
arguments” —Gensler, Intro to Logic

Build arguments with propositions and logical connectives

® Propositions: Statements that may be true or false
P Universe can be modeled with ACDM
A Qior € (0.9, 1.1]
B : Q1S not 0
B: notB,i.e.,Qy =0
® Connectives:
ANB: Aand B are both true

AV B : Aor Bis true, or both are



Arguments

Argument: Assertion that an hypothesized conclusion, H,
follows from premises, P = {A, B,C, ...} (take " = “and”)

Notation:
HI|P : Premises P imply H
H follows from P

H is true given that P Is true



Valid vs. Sound Arguments

Content vs. form

® An argument is factually correct iff all of its premises are
true (it has “good content”).

® An argument is valid iff its conclusion follows from its
premises (it has “good form”).

® An argument is sound iff it is both factually correct and
valid (it has good form and content).

We want to make sound arguments. Statistical methods
address validity, but there is no formal approach for
addressing factual correctness.



Factual Correctness

Although logic can teach us something about validity and invalidity, it can
teach us very little about factual correctness. The guestion of the truth or
falsity of individual statements is primarily the subject matter of the
sciences. — Hardegree, Symbolic Logic

To test the truth or falsehood of premisses is the task of science. . . . But

as a matter of fact we are interested in, and must often depend upon, the

correctness of arguments whose premisses are not known to be true. —
Copi, Intro to Logic



Premises
Facts — Things known to be true, e.g. observed data

“*Obvious” assumptions — Axioms, postulates, e.g.,
Euclid’s first 4 postulates (line segment b/t 2 points;
congruency of right angles . . . )

“Reasonable” or “working” assumptions — E.g., Euclid’s
fifth postulate (parallel lines)

Desperate presumption!

Conclusions from other arguments



Deductive and Inductive Inference

Deduction—Syllogism as prototype

Premise 1. A implies H
Premise 2: A Is true
Deduction: -, H Is true
H|P is valid

Induction—Analogy as prototype

Premise 1: A, B,C, D, E all share properties z, v, 2
Premise 2: F' has properties z, y

Induction: F' has property z

“F' has z”|’P Is not valid, but may still be rational (likely,
plausible, probable)

We seek a guantification of the strength of inductive
arguments; we will use the mathematics of deduction to guide
us.



Deductive Logic

Assess arguments by decomposing them into parts via
connectives, and assessing the parts

Validity of A A B|P

AlP AlP
B|P | valid | invalid
B|P | invalid | invalid
Validity of AV B|P
AP | AP
B|P | valid | valid
B|P | valid | invalid




Integer Representation of Deduction
V(H|P) = Validity of argument H|P
V. = 0 — Argumentis invalid

= 1 — Argument is valid

Then deduction can be reduced to integer multiplication and
addition:

V(AABIP) = V(AP)V(BIP)
V(AV B|P) = V(A[P)+V(B|P)— V(A x B[P)



Real Number Representation of Induction

P(H|P) = strength of argument H|P
P = 0 — Argumentis invalid
= 1 — Argumentis valid

€ (0,1) — Degree of implication
A mathematical model for induction:

‘AND’ (product rule) P(A,B|P) = P(A|P)P(B|A,P)
P(B|P) P(A|B,P)

‘OR’ (sumrule) P(AV B|P) = P(A|P)+ P(B|P)
—P(A, B|P)

We will explore the implications of this model.



The Product Rule

We simply promoted the V' algebra to real numbers; the only
thing changed is part of the product rule:

V(A x B|P)
P(A x B|P)

V(A[P) V(B|P)
P(A|P) P(B|A, P)

Suppose A implies B (i.e., B|A, P is valid). Then we don't
expect P(A A B|P) to differ from P(A|P).

In particular, P(A A A|P) must equal P(A|P)!

Such gualitative reasoning satisfied early probabilists that the sum and
product rules were worth considering as axioms for a theory of quantified
Induction. Today many different lines of argument derive those rules from
various simple and appealing requirements (logical consistency, optimal
decisions, conservation of information).



Interpreting Abstract Probabilities

If we like there is no harm in saying that a probabillity
expresses a degree of reasonable belief. . . . ‘Degree of
confirmation’ has been used by Carnap, and possibly avoids
some confusion. But whatever verbal expression we use to
try to convey the primitive idea, this expression cannot
amount to a definition. Essentially the notion can only be
described by reference to instances where it is used. It is
Intended to express a kind of relation between data and
consequence that habitiaully arises in science and in
everyday life, and the reader should be able to recognize the
relation from examples of the circumstances when it arises.
— Sir Harold Jeffreys, Scientific Inference



More On Interpretation

Physics uses words drawn from ordinary language—mass, weight,
momentum, force, temperature, heat, etc.—but their technical meaning is
more abstract than their colloguial meaning. We can map between the
colloguial and abstract meanings associated with specific values by using

specific instances as “calibrators.”

A Thermal Analogy

Intuitive notion | Quantification Calibration

Hot, cold Temperature, 7' | Cold as ice = 273K
Boiling hot = 373K

uncertainty Probability, P Certainty =0, 1
p = 1/36:
plausible as “snake’s eyes

p = 1/1024:
plausible as 10 heads




Hypotheses, Data, and Models

We seek to appraise scientific hypotheses in light of
observed data and modeling assumptions.

Consider the data and modeling assumptions to be the
premises of an argument with each of various
hypotheses, H;, as conclusions: H;|Dgps,I. (I =
“background information,” everything deemed relevant
besides the observed data)

P(H;|Dops, I) measures the degree to which (Dgps, 1)
support H;. It provides an ordering among the H,.

Probability theory tells us how to analyze and appraise
the argument, I.e., how to calculate P(H;|Dgps, I) from
simpler, hopefully more accessible probabilities.



Lecture 1

Big picture: The role of statistical inference
Foundations: Quantifying uncertainty with probability
Fundamentals: Three important theorems

Basic applications of probability theory

Inference with parametric models: Overview
Inference from binary outcomes



Three Important Theorems
Bayes’s Theorem (BT)
Consider P(H;, Doys|I) using the product rule:

P(H;, Dops|I) = P(H;|I) P(Dops|H;, I)
— P(Dobs‘]) P(Hi’Dob&[)

Solve for the posterior probability:

P(DObS|Hi7 [)
P(Dapal])

P(H;|Dops, I) = P(H;|I)

Theorem holds for any propositions, but for hypotheses &
data the factors have names:

posterior o prior x likelihood
norm. const. P(Dqps|I) = prior predictive



Law of Total Probability (LTP)

Consider exclusive, exhaustive {B;} (I asserts one of them must be
true),

> P(AB|I) = ZP | A, ) P(A|I) = P(A|I)

= ZP P(A|B;, 1)

If we do not see how to get P(A|I) directly, we can find a set {B;}
and use it as a “basis"—extend the conversation:

P(A|I) = ZP P(A|B;, 1)

If our problem already has B; in it, we can use LTP to get P(A|I)
from the joint probabilities—marginalization:

P(A|I) = ZPAB]I



Example: Take A = Dgps, B; = H;; then
P(Dops|I) = ZP(Dobs:H 1

— ZP obs|Hz7I)

prior predictive for Dy, = Average likelihood for H;
(aka “marginal likelihood”)

Normalization

For exclusive, exhaustive H;,

ZP(HJ):



Bayesian Inference

Dennis Lindley, “What is a Bayesian?”

“... a Bayesian is one who holds that the only sensible
measure of uncertainty is probability. Or to express the
same idea differently and more operationally,

statements of uncertainty should combine according to
the rules of the probability calculus.”

Bayesian inference consists of reporting probabillities for
things we are uncertain of.

It uses all of probability theory, not just (or even primarily)
Bayes’s theorem.

For practical purposes, take the “Three Theorems” to be the
*axioms” for the theory.



The Rules in Plain English
With corollaries

® Ground rule: Specify premises that include everything
relevant that you know or are willing to presume to be true
(for the sake of the argument!).

® BT: Make your appraisal account for all of your premises.

Things you know are false must not enter your accounting.

® LTP: If the premises allow multiple arguments for a
hypothesis, its appraisal must account for all of them.

Do not just focus on the most or least favorable way a hypothesis
may be realized.



Terminology: Likelihood Function

Data enter inferences via P(Dops|H;, ).

To assign or calculate this, we’ll have to consider what other
data, D;, we might have obtained.

Sampling distribution for data: Dependence on D,
f(k) = P(Dy|H;. T)
Consider this vs. k for fixed 7. It is normalized over k.
Likelihood for hypothesis: Dependence on H;

»Ci — P(Dobs‘Hial)

Consider this vs. i for Dy, fixed at Dgps. It IS not a probability for
H;| ..., and need not be normalized over ;.



Continuous Hypothesis Spaces

For hypotheses labeled by a continuous parameter, 6,
consider statements about intervals of 6.

P(0 € [04,05]|1)

Probabillity density function (pdf):

(0 = 1im PO €10.0+660)

00—0 06 H !

Statements about intervals — inegral of p(6|I) over interval.
All the rules hold for pdfs (66 cancels).

Abuse of notation: We will often conflate p(#|I) (a function of the real
number 6) with P(0 € [0,0 + §0]|I) (a function of an argument comprised
of propositions).

Note the Skilling conditional: || 1



A Bit More On Interpretation

Bayesian

Probability quantifies uncertainty in an inductive inference. p(x)
describes how probability is distributed over the possible values x
might have taken in the single case before us:

P

Frequentist

p is distributed

4

X has a single,
uncertain value

X

Probabilities are always (limiting) rates/proportions/frequencies in an
ensemble. p(xz) describes variability, how the values of x are
distributed among the cases in the ensemble:

x is distributed

AN

——0—0-0- 080000 0—0—0—
X
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Basic Application: Changing Variables
We know p(6|1). What is p(¢|I) for ¢ = &(0)?

po) = [ d0p(0.0
— [ a0 p(olo) () |1
First factor is a o-function:

p(¢l0,1) = 0lp — ®(0)]
do

= 0|0 — O(¢)|— (sum over roots)

d¢

Thus

p(o|l) = p(@\])d—e (sum over roots)

d¢



Basic Application: Propagate Uncertainty

We know p(6, ¢|I). What is p(f|I) for f = F(0, ¢)?

p(f) = / 46dé p(f. 6, ¢)

_ / d0d¢s p(£10, ) p(6, 6) |1

First factor is a o-function; change it to one of 6, ¢:

p(fl0,¢,1)

do

6 6(f.0)

For example, if p(0, ¢|1) = h(0)g(9),

p(fI1) = / 16 hO(f, 6] g(¢)

df
df



Example: f = A6 + B¢, h and ¢ are Gaussians at 6 and ¢
with widths oy, o,. Let N(-) be standard normal:

[=Be _ g —o| 1
p(f|[):/dng 4 x N ¢0¢¢ X

Sum Gaussian exponents, complete square in ¢, integrate —
p(f|I) is Gaussian,

f = (A0 + Bg) £ (A0} + B%02)"/?

This procedure isn’t limited to small uncertainties, or
Gaussians; it's completely general.
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Inference With Parametric Models

Models M; (: = 1 to N), each with parameters 6;, each imply a
sampling dist’n (conditional predictive dist’'n for possible data):

The 60, dependence when we fix attention on the observed
data is the likelihood function:

Ez'(@z') = p(Dobswia Mz)

We may be uncertain about : (model uncertainty) or 6,
(parameter uncertainty).



Parameter Estimation

Premise = choice of model (pick specific ?)
— What can we say about 6,?

Model Uncertainty

® Model comparison: Premise = {M;}
— What can we say about ¢?

® Model adequacy/GoF: Premise = M,
— Is M; adequate?
Hybrid Uncertainty

Models share some common params: ¢; = {¢,n;}
— What can we say about ¢?
(Systematic error is an example)



Nuisance Parameters and Marginalization

To model most data, we need to introduce parameters
besides those of ultimate interest. nuisance parameters.

Example: The data measure a rate r that is a sum of an

Interesting signal s and a background 6. We have additional
data just about b.

What do the data tell us about s?



Marginal posterior distribution
p(s1D.21) = [ dbp(s.b|D. 21

X p(sM)/dbpb\ L(s,b)
)

= p(s|M)L,.(s)
Lon(s) = L[s,b(s)] ob(s)

Profile likelihood £,(s) = L[s, b(s)] gets weighted by a
parameter space volume factor
E.g., Gaussians: § =7 — b, o2 =02+ o2

Background subtraction is a special case of background
marginalization.



Model Comparison

I =(M;V M,V ...)— Specify a set of models.
H; = M, — Hypothesis chooses a model.

Posterior probability for a model:

B i P(DIM;, )

o p(M;|I)L(M;)

But £(M;) = p(D|M;) = | db; p(6;|M;)p(D|0;, M;).

Likelihood for model = Average likelihood for its
parameters

L(M;) = (L(0;))

Varied terminology: Prior predictive = Average likelihood = Global likelihood =
Marginal likelihood = (Weight of) Evidence for model



Odds and Bayes factors

Ratios of probabilities for two propositions using the same
premises are called odds:

=

(
Oij (Mj Dal)
(
(

3
<

1) p(DIM;. D
J ]) p(D|Mj7[)

=

3
=

The data-dependent part is called the Bayes factor:

p(D|M]7[>
p(D|M],])

It is a likelihood ratio; the BF terminology is usually reserved
for cases when the likelihoods are marginal/average
likelihoods.



An Automatic Occam’s Razor

Predictive probabilities can favor simpler models:

p(D|M;) = /d@' p(0:| M) L(0;)

P(DlH) Simple H




The Occam Factor:

p, L .
Likelihood

00

0

p(DIM;) = / 46; p(6:| M) L(6:) ~ p(0]M)L(0,)50,

~ 00,

= Maximum Likelihood x Occam Factor

Models with more parameters often make the data more
probable— for the best fit.

Occam factor penalizes models for “wasted” volume of
parameter space.



Theme: Parameter Space Volume

Bayesian calculations sum/integrate over
parameter/hypothesis space!

® Marginalization weights the profile likelihood by a volume
factor for the nuisance parameters.

® Model likelihoods have Occam factors resulting from
parameter space volume factors.

Many virtues of Bayesian methods can be attributed to
accounting for the “size” of parameter space. This idea does
not arise naturally in frequentist statistics (but it can be added
“by hand”).



Roles of the Prior

Prior has two roles

® [ncorporate any relevant prior information

® Convert likelihood from “intensity” to “measure”
— Accounts for size of hypothesis space

Physical analogy
Thermo: @ = /chv(r)T(r)

Probability: P o / do p(6|1)L(6)

Max. likelihood focuses on the “hottest” hypotheses.
Bayes focuses on the hypotheses with the most “heat.”
Region can have more “heat” due to larger c,/prior or
larger volume.



Two bodies for which the most heat is not
In the regions of highest temperature

» O3

N\

Middle dominates ¢ nonuniform c_ Middle dominates ¢ nonuniform geometry

Cy

X X



Well-Posed Problems

The rules express desired probabilities in terms of other probabilities.

To get a numerical value out, at some point we have to put numerical
values in.

Direct probabilities are probabilities with numerical values determined
directly by premises (via modeling assumptions, symmetry arguments,
previous calculations, desperate presumption . . . ).

An inference problem is well posed only If all the needed probabilities are
assignable based on the background information. We may need to add
new assumptions as we see what needs to be assigned. We may not be
entirely comfortable with what we need to assume! (Remember Euclid’s
fifth postulate!)

Should explore how results depend on uncomfortable assumptions
(“robustness”).
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Inference From Binary Outcomes

Parameter Estimation

M = Existence of two outcomes, S and F'; each trial has
same probability for S or F

H; = Statements about a, the probabillity for success on
the next trial — seek p(a|D, M)

D = Sequence of results from N observed trials:
FFSSSSFSSSFS (n = 8 successes in N = 12 trials)

Likelihood:
p(Dla, M) = p(failure|a, M) x p(success|a, M) x - - -

= a"(1—a)¥ "
= L(a)



Prior:

Starting with no information about a beyond its definition,

use as an “uninformative” prior p(a|M) = 1. Justifications:

® [ntuition: Don’t prefer any « interval to any other of
same size

® Bayes'’s justification: “Ignorance” means that before
doing the N trials, we have no preference for how
many will be successes:

1

S M)=1
N1 p(a|M)

P(nsuccess|M) =

Consider this a convention—an assumption added to M
to make the problem well posed.



Prior Predictive:

p(D|M)

A Beta integral, B(a,b) = [dxa* (1 — )"

/da a"(1—a)¥ ™"

Bn+1,N—n+1)=

n!(N —

(N +




Posterior:

(N +1)!

plalD, M) = N

Cbn(l . a)N—n

A Beta distribution. Summaries:

® Best-fit: 4 = 2 =2/3; (a) = 2L ~ (.64

N N+2
® Uncertainty: o, = \/ %ji);)]j (;V”gl)) ~ (.12

Find credible regions numerically, or with incomplete
beta function

Note that the posterior depends on the data only through
n, not the NV binary numbers describing the sequence. n
IS a (minimal) Sufficient Statistic.



p(aD.M)

Posterior Distribution

| T T 1 | T T 1 | T T 7T

T T 7T

68.3% HPD CR

I | I | | I | | I I

(@]



Model Comparison: Equal Probabilities?

Ml: a — 1/2
Ms: a € |0, 1] with flat prior.

Maximum Likelihoods:

1
M, : p(D|M;) = — =2.44 x 10*

ON

My: L(2/3) = @)n (%)Nﬂ —4.82x107*

p(D|M,)

A = 0.51
p(D‘C% MQ)

Maximum likelihoods favor M, (failures more probable).



Bayes Factor (ratio of model likelihoods):

1 - nl(N —n)!
B p(D|M:) (N +1)!
27 (D[ M) nl(N — n)12N
= 1.57

Bayes factor (odds) favors M, (equiprobable).

Note that for n = 6, By, = 2.93; for this small amount of
data, we can never be very sure results are equiprobable.

Ifn =0, Bix =~ 1/315; if n = 2, B1y &= 1/4.8; for extreme

data, 12 flips can be enough to lead us to strongly
suspect outcomes have different probabilities.



Binary Outcomes: Binomial Distribution

Suppose D = n (number of heads in NV trials), rather than the
actual sequence. What is p(a|n, M)?

Likelihood:

Let S = a sequence of flips with n heads.
p(nla, M) = > p(S|a, M)p(n|S,a, M)
S

= a"(a—a)""Ch N
C,.n = # of sequences of length N with n heads.

N!
n!(N —n)!

— p(nla, M) = a"(1— a)N_”

The binomial distribution for n given a, N.



Posterior:

N! CLn(l _a)N—n

plaln, M) = ==
p(n|M) = n!(NNi n)! /da a" (1 —a)"™"
1
T ON+1
— plaln, M) = ngé\];+_li!)!a”(l —a)V "

Same result as when data specified the actual sequence.



Another Variation: Negative Binomial

Suppose D = N, the number of trials it took to obtain a
predifined number of successes, n = 8. What is p(a|N, M)?

Likelihood:

p(N|a, M) is probability for n — 1 successesin N — 1
trials, times probability that the final trial is a success: Let
S = a sequence of flips with n heads.

(N —1)!

p(Nla, M) (n — 1IN —n)!

an—l(l L a)N—’rLa

The negative binomial distribution for N given a, n.



Posterior:

a"(1—a)¥ ™"
p(D|M)

p(a‘DaM) — 7/7,,N

p(DIM) = Chy [daa’(1=a)™

(N + 1)' 'a”(l . a)N—n

— plalD, M) = n!(N —n)!

Same result as other cases.



Final Variation: Meteorological Stopping

Suppose D = (N, n), the number of samples and number of
successes in an observing run whose total number was
determined by the weather at the telescope. What is

pla|D, M)?

Likelihood:

p(Dla, M) is the binomial distribution times the probability
that the weather allowed N samples, W(N):

N!
nl(N —n)!

p(Dl|a,M) = W(N) an(l—a)N_”

Let C,, v = W(N) (). We get the same result as before!



Likelihood Principle

To assign L(H;) = p(Dops|H;, I), we must contemplate what
other data we might have obtained. But the “real” sample
space may be determined by many complicated, seemingly
Irrelevant factors; it may not be well-specified at all. Should
this concern us?

Likelihood principle: The result of inferences depends only on
how p(Dops|H;, I) varies w.r.t. hypotheses. We can ignore
aspects of the observing/sampling procedure that do not
affect this dependence.

This is a sensible property that frequentist methods do not
share. Frequentist probabilities are “long run” rates of
performance, and thus depend on details of the sample
space that may be irrelevant in a Bayesian calculation.



Key Ideas

Statistics as hypothesis appraisal—one part of data analysis
Probability as quantifying strength of arguments

Bayesian inference: All of probability theory
» Bayes’s theorem

> Law of total probability
Changing variables; propagating uncertainty
Parametric models: Role of parameter space volumes

Binary outcomes: Sufficiency, likelihood principle
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