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Bayesian Information Criterion

B I C = 2l(yj�̂ )� p log(n);

� l (yj�̂ ) the log-likelihood of data y given �̂
� p the number of estimated parameters
� n, the cardinality of y
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What is n?

1. Usually n is taken to be the cardinality of y

2.
y11 | y12

y21 | y22

What is n for a 2 � 2 contingency table?

n is the number of cases
P

ij yij , the sum of cell counts, instead
of the 4 counts occurring in the table (Raftery, 1986)

3. What is n for multivariate observations y = y1 : : : yp when we are
estimating p means?
When there are n� cases, n should be de�ned as n� rather than

n� � p, being the cardinality of y , because there are n�

observations per estimated parameter

Conclusion: n is the number of observed statistics per parameter



Introduction

Motivational Examples

� What is n ?

� What is n ? (Continued)

� What is n for dependent

data?
� Challenges in de�ning n

Generalized BIC

Simulation

- p. 5/16

What is n? (Contin ued)

Consider data from p groups

yip = � p + " ip i = 1 : : : n� ; p = 1 : : : r

" ip � N (0; � 2)

with � p and � 2 being unknown.

Different parameters can have different sample sizes:
� the sample size for estimating each � p is n�

� the sample size for estimating � 2 is n� � r
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What is n for dependent data?

Consider time series yit ,

yit = � yi t � 1 + " it ; i = 1; : : : ; n� ; t = 1; : : : T;

" it � N (0; � 2):

When the goal is to estimate the mean level �y, consider two
extreme cases:

1. � = 0; then the yit are i.i.d., and the estimated parameter �y has
sample size n = n� � T

2. � = 1; then clearly the effective sample size for �y equals n = n�

See Thiebaux & Zwiers (1984) for discussion of effective sample
size in time series.
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Challeng es in de�ning n

1. Different parameters may have different values of np associated

with them

2. n may depend on the values of speci�c parameters (dependent
data)

3. Sample size adjusted BIC: n� = n +2
24 , derived by Rissanen

(1978) and suggested by Sclove (1987) to work well in mixture
type models.
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Laplace Appr oximation - MLE substitution

Using the Approximation to the posterior density and substituting the MLE
for the posterior mode we have

logP(Y jM k ) = logP(Y jb� k ; M k ) + logP(b� k jM k ) +
dk

2
log(2� )

�
1
2

log jI O (b� k )j + O(n� 1);

� the source of n in BIC: � 1
2 log jI O (b� k )j

� n should be the rate at which the Hessian matrix of the
log-likelihood function grows. (Kass & Raftery, 1995)

The expected information matrix grows proportional with n
(and the variance of parameters decreases with n)
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Laplace Appr oximation - MLE substitution

Using the per observation expectation

logP(Y jM k ) = logP(Y jb� k ; M k ) + logP(b� k jM k ) +
dk

2
log(2� )

�
dk

2
log(n) �

1
2

log
�
�
� �I 0(b� k )

�
�
� + O(n� 1=2);
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Effective sample size corrected BIC

GBIC = 2`(�̂ ) �
pX

i =1

log(1 + ni ) + 2
pX

i =1

log

0

B
B
B
B
@

 

1 � e
�

�̂ 2
i

d i (1+ n i )

!

p
2 �̂ 2

i =(di (1 + ni ))

1

C
C
C
C
A

:

We now need estimates of the ni , ie estimates of the effective
sample size per parameter.
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Effective sample size estimates

For each case x i , the associated observed information matrix is

Î i = (Î i;j k ), having (j; k) entry

Î i;j k =
@2

@� j @� k
log f (x i j � )

�
�
�
� = �̂

:

The effective sample size nj for � j is then de�ned as follows:
� De�ne information weights wij = Î i;j j =

P n
i =1 Î i;j j :

� Let nj = Î j j =
P n

i =1 wij Î i;j j :
Note that for this to work we need the contributions of individual

cases to the observation information matrix.
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Simulation: Linear Regression

Model generated from

Yn � 1 = X n � 8� 8� 1 + � n � 1 � � N (0; � 2)

� = ((3; 1:5; 0; 0; 2; 0; 0; 0)

Design Matrix X � N (0; �) ; � =

0

B
B
B
B
B
B
@

1 � � � � �

� 1 � � � �
...

...
. . .

...

� � � � � 1

1

C
C
C
C
C
C
A

Simulation scheme

� sample size = 30, 60, 200, 500.

� standard deviation � = 1, 2, 3.

� corr coeff � = 0, .2, .5.

� We have also included AI C = � 2l (� ) + 2dk in our comparison.



Introduction

Motivational Examples

Generalized BIC

Simulation

� Simulation: Linear Regression

� Results: Linear regression

� Results: Linear regression

� Results: Linear regression

� Conclusion: Linear Regression

� Conclusions

- p. 12/16

Results: Linear regression
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Results: Linear regression
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Results: Linear regression
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Conc lusion: Linear Regression

� GBIC and ABF2 best under most conditions.

� The gain in is more signi®cant for highly correlated covariate.

� The gain in is more signi®cant for smaller sample size.

� The gain in performance in ABF2 compared to BIC in high signal to
noise ratio and uncorrelated variables ( � = 1; � = 0) is also
signi®cant
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Conc lusions

The simulations show good performance of the GBIC as a
model selection statistic.
Future work should extend these simulations and look into
the interpretations of the effective sample size estimates.
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