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Motivation for Latent Variable Models:

Interest in studying variables that cannot be measured directly
without error

Numerous examples in sociology, but also in biomedical studies
(e.g., stress, dementia, quality of life, DNA damage, etc)

Latent variables also convenient for accounting for correlation

� Random e�ects models, joint models

� Sparse factor models for gene expression data (West etc)

� Modeling of dependency in outcomes with mixed scales

� Flexibility in covariance structure modeling, etc
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Model Uncertainty

Common criticism of LV models is justi�cation for chosen
model

Common approach: compare deviance of many models & basis
inferences onbest - problematic

When many models consistent with sociological theory, may
not be single dominant model

How to conduct analyses in light of model uncertainty?
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Our Focus
Review existing methods & develop new methods for
accommodating uncertainty in latent variable (LV) models

Model selection: Choose one model from among a list of
competing models

Model averaging: Allow for uncertainty in the model in
conducting inferences & predictions

May be a large number of competing LVs - some consistent
with a primary hypothesis & some not

Bayesian paradigmprovides formal framework to account for
model uncertainty
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Model uncertainty in LV models challenging problem!

Number of LVs often unknown

Constraints on parameters needed for identi�ability &
interpretability - change with number of LVs

Uncertain about relationships among LVs

Uncertain about measurement and residual structure

Uncertain about distributions of LVs and residuals

Uncertain about linear or form of regression model
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Too many problems to solve all at once!

Focus primarily on normal linear structural equation models
(SEMs)

Also some consideration to normal linear and generalized linear
random e�ects models

Starting consideration of semiparametric methods

Bayesianapproaches motivated by practicality
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Review of Bayesian literature

Papers by Raftery advocating use ofBIC for SEM selection

BIC justi�ed as approximation to Bayes factor (BF)

Limited work carefully considering alternative approximations
to BF in SEM context

Some papers on Bayes inference in SEMs usingMCMC - sloppy
(improper posteriors, MCMC chains too short, no justi�cati on
for priors, no consideration of parameterization, etc)

Raftery proposes an approach for model averaging in SEMs,
using BIC

BIC approximation can perform poorly

7



Overview of Three Papers:
Dunson, D.B., Palomo, J. and Bollen, K. (2005). Bayesian

structural equation modeling. Handbook on Structural Equation
and Latent Variable Models, S-K. Lee, editor.

Palomo, J. and Dunson, D.B. (2005). Bayesian inference and
computational issues in structural equation modeling, to be
submitted.

Dunson, D.B., Palomo, J. and Zavisca, J. (2005). Bayesian model
selection and averaging in structural equation models, to be
submitted.
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Components of SEM

1. Measurement Model

y i = � + � y � i + � y
i

x i = � + � x � i + � x
i

� ; � = vectors of intercepts
� y = coe�cients ( factor loadings) on latent variables � i

� x = coe�cients on latent varaibles � i

� y
i � Np(0; � y ), � y = diagonal

� x
i � Nq(0; � x ), � x = diagonal
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2. Latent Variable Model

� i = B � i + � � i + � i ;

� i = r � 1 vector of endogenous latent variables
� i = s � 1 vector of latent exogenous variables

B = r � r matrix characterizing dependency among� i

- constrained so that (I � B ) non-singular

� = r � s matrix characterizing dependency of� i on � i

� i � N(0; 
 � ) = r � 1 disturbance vector - uncorrelated with
� i � N(0; 
 � )
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Bayesian SEM. Dunson, Palomo and Bollen (2005)

The complete data likelihood including the LVs is

L (y ; x ; � ; � ; � ) =
nY

i =1

(

Np (y i ; � y + � y � i ; � y ) � Nq (x i ; � x + � x � i ; � x ) �

� Nm (� i ; � + B� i + � � i ; 
 � ) Nn (� i ; � � ; 
 � )

)

The joint posterior, following Bayes' rule, is

� (� ; � ; � jy ; x ) =
L (y ; x ; � ; � ; � )� (� )R

L (y ; x ; � ; � ; � )� (� )d� d� d�
;

where � =
�
� ; b; 
 ; � y ; � x ; � y ; � x ; � 2

y ; � 2
x ; ! 2

� ; � � ; ! 2
�

�
is the vector

of free parameters of the model.
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Issues on the Bayesian approach

For convenience use conditionally-conjugate normal &
inv-gamma priors.

� Problem: Di�use inv-gamma priors lead to major
computational problems. Slow mixing, � improper
posteriors.

� Sol: Gelman (2005) suggests using parameter expansion to
induce a half-t prior.

Gibbs sampling is used for posterior computation for the
parameters and LV.

� Problem: Parametrization has huge impact on mixing.

� Sol: E�cient parametrization and blocking to improve
mixing.
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Advantages of the Bayesian approach

Does not rely on large sample size for justi�cation

Estimate exact posteriors of parameters and LV:

� Formally compare scoresfor di�erent subjects,

� Identify outlying subjects

� Assess relationships not be fully captured by the parametric
model (is the association between latent traits linear and
apparent across the range of the factor scores or
predominantly due to the more extreme individuals?).
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Democratization and Industrialization case study

Question: Does industrialization (IL ) in Third World countries
predict current & future political democracy level ( PDL)

Data: measures of PDL (in 1960 and 1965) and IL (in 1960) for
75 developing countries

Expert raters provided di�erent measures of PDL

IL measured using standard indicators
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Democratization and Industrialization case study
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Bayesian analysis

Priors: Chosen based on expert elicitation (Ken) (sensitivity
analyses conducted)

Posterior computation implemented using Gibbs sampling
(50,000 iterations)

Conclusions based on population parameters similar to
frequentist results
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Posteriors for latent variables provide important
insight!

Sort countries by increasing 1960 IL & examine relationship
with change in PDL

Posterior probability of a change = 0.94

De�ned three clusters of countries (1) poorly industrialized; (2)
mildly industrialized; and (3) highly industrialized

Impact of IL di�ers between groups
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Model Selection & Averaging in SEMs

Common criticism: Robustness to model assumptions

Uncertainty in SEM

� Which LV are structurally related?

� The occurrence of the cross-loadings between latent and
observed variables,

� Whether a particular LV is needed,

� etc.

In many applications, thousands of models are consistent with
the (sociologic) theory.

Should we choose one model or average across models?
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Bayesian stochastic search. Dunson, Palomo Zavisca
(2005)

Motivation

� BIC, Laplace approximations not appropriate (constraints)

� More 
exibility in priors (not just unit information).

� Have to deal with very large model lists.

Our approach: steps

1. List all a priori plausible models

� Imbed these models in an encompassing model,
� Encompassing model need not be in the list nor even

identi�ed,
� Accounts for uncertainty in whether to include LVs
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2. Choose prior probability for models in the list

� Potentially uniform, typically not,
� Speci�ed for models in each block conditional on models

for other blocks,
� Models for a given block depend on the models for the

other blocks.

3. Specify priors for parameters in each model

� We adapt the Gelman (2005)half-t priors for whether or
not including a LV,

� Partly use priors speci�ed for computational convenience
(a critical consideration in large model spaces).
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Reparameterizing the SEM

zi = �d i + � D i � i + � i ; � i � Np+ q(0; � z )

� i = [ I � B � ]� 1[� � + � i ]; � i � N r + s(0; 
 � );

B � =

2

4 B r � r � r � s

0s� r 0s� s

3

5 � � = ( � 0; � � )0

Substituting back and making � � + � i = D � ' i ;

zi = �d i + � D i [I � B � ]� 1D � ' i + � i ; � i � Np+ q(0; � z )

' i � N r + s(� ' ; S ' );

with D � = diag( � 1; : : : ; � r + s), ' i = ( ' i 1; : : : ; ' i;r + s)0,
� ' l =

� � l
� l

, ! l = j� l j � � ' l , l = 1 ; : : : ; r + s.
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Recall the LISREL parametrization

� i = � + B� i + � � i + � i

y i = � y + � y � i + " y
i

x i = � x + � x � i + " x
i
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Reproductive epidemiology case study: Palomo and
Dunson (2005)

Goal: Estimate whether or not there is an e�ect of abstinence
interval on sperm concentration.

Samples from 220 men were analyzed

Three measures of sperm concentration were collected

Semen volume was also collected

Considered factor-type model with latent concentration � i

Previous analyzed by Dunson (2005) using nonparametric Bayes
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Assessed impact of parameter expansion,
centering & priors

Summary of results (one model):

Autocorrelation in MCMC algorithm decreased

Parameter expansion had more of an impact than centering

half-t or half-Cauchy priors more reasonable choice when
limited prior information than di�use gammas

Currently implementing these approaches in model averaging
setting
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Gibbs sampling algorithm

To improve mixing we accomodate halft priors and allow model
selection in a blocked parameter expanded gibbs sampling
algorithm.

Sample for i = 1 : : : n

� ( ' i 1 j ' i 2 ;  ; � ; � ; � z ; � ' ; � ' ; z ) =

N
� �

� � 1
' 1

+ e�
0
i 1 � � 1

z
e� i 1

� � 1 �
� � 1

' 1
� ' 1

+ e�
0
i 1 � � 1

z z �
i
�
;
�
� � 1

' 1
+ e�

0
i 1 � � 1

z
e� i 1

� � 1
�
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Sample

� ( 1 j  2 ; ' ; � ;� ; � z ; � ' ; � ' ; z ) /

/ N k 1

�
 1 ; �  1

; �  1

�
Nn ( p+ q)

�
z ; w 1 + U 1  1 ; � z;n

�

� (� l 1 j � l 2 ; � ( � l ) ; ' ; ; � ; � z ; � ' ; � ' ; z ) /

/ N k 2 l

�
� l 1 ; � � l 1

; � � l 1

�
Nn ( r + s)

�
� l ; w 2l + U 2l � l 1 ; ! 2

l I n
�

� (� 1 j � 2 ; ' ;  ;� ; � z ; � ' ; � ' ; z ) /

/ N k 3

�
� 1 ; � � 1

; � � 1

�
Nn ( p+ q)

�
z ; w 3 + U 3 � 1 ; � z;n

�

with  and � vectors of free parameters of the model.
Sample for j = 1 ; : : : ; p + q

� (� � 2
j j ' ;  ; � ; � ; � ' ; � ' ; z ) = G

�
aj +

n
2

; bj +
1
2

nX

i =1

(zij � � 0
j d i � � 0

j D i � i )
2
�

;

Sample for l = 1 ; : : : ; r + s

� (� � 2
' l

j ' ;  ; � ; � ; � z ; � ' ; z ) = G
�

cl +
n
2

; dl +
1
2

nX

i =1

( ' il � � ' l )2
�

:
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Stochastic search algorithm

1. Update the parameters shared by all models by sampling in
blocks from their full conditional posterior distribution s,

2. Update the latent variables, ' i , for i = 1 ; : : : ; n, as before,

3. For blocks a = 1 ; : : : ; A, repeat the following:

a) Calculate � a;m a (z), the marginal likelihood for model
M a = ma , for ma = 1 ; : : : ; L a , holding all the unknowns in
model �xed, except the parameters in blocka. For example,
if  1 is dropped, then the marginal likelihood is

� a;m a (z) =
Nk1 (0; �  1

; �  1 ) Nn (p+ q) (z; w 1; � z;n )

Nk1 (0; b�  1
; b�  1 )

;

b) Let Pa;m a be the conditional prior probability of model
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M a = ma given M a0 for all a0 6= a. Then, the full conditional
posterior probability of M a = ma is

bPa;m a =
Pa;m a � a;m a (z)

P L a
l =1 Pa;l � a;l (z)

:

Update M a by sampling from
multinomial (1; : : : ; L a ; bPa;1; : : : ; bPa;L a ).

c) Update the parameters in M a by sampling from the full
conditional posterior.

4. Repeat steps 1-3 discarding a burn-in to allow convergence.
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Summary & Open Problems

Developed improved approaches for Bayesian implementation
of one SEM

Also developed algorithm for model selection/averaging across
SEMs (computationally intensive!)

Huge numbers of applications outside of traditional social
science settings

Very interesting to develop fast approximations - ideally with
reasonable implicit priors!

Bayesian semiparametrics ongoing area of interest
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