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Responses Yj1 Yj2 · · · YjK

Missing Indicator Rj1 Rj2 · · · RjK

Covariates xj1 xj2 · · · xjK

Y j = (Yj1, Yj2, . . . , YjK)′ xj = (x′
j1, x

′
j2, . . . , x

′
jK)′ Rjk = 1 if Yjk observed

RANDOM EFFECT MODELS

• Formulated based on g(E[Yjk|xj, ui]) = uj + x′
jkβ where uj ∼ G(uj; θ)

• Likelihood/Bayesian methods (EM, MCEM, MCMC, etc.) for random effects and incomplete data

MARGINAL METHODS

• Focus is in typically on E(Yjk|xj) = µjk and sometimes COV (Yjk, Yjk′|xj)

• Inverse probability weighted generalized estimating equations [Selection Models]

TRANSITIONAL METHODS

• Formulated based on g(E[Yjk|Yj1, Yj2, . . . , Yj,k−1]) = x′
jkβ [missing responses → missing covariates]

• Likelihood the most common basis for inference, though increasing interest in robust methods for marginal “tran-
sition probabilities” and estimating function framework
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A.1 INCOMPLETE CLUSTERED LONGITUDINAL DATA

EXAMPLE: SCHOOL-BASED LONGITUDINAL STUDIES

• schools form the clusters (Ji students for school i) and each student is followed longitudinally for smoking status

ISSUES TO CONSIDER

Random effect models generalize nicely for incomplete hierarchical data

For marginal methods, “selection model” for inverse probability weighted estimating functions should deal with varia-
tion between clusters in propensity for “missing data”

• via latent cluster-specific random effects?

• via multivariate marginal methods?

For transitional models, clustering of transition occurrences must be dealt with

• multivariate latent random effects at cluster level for each transition probability?

• dealing with incomplete data via latent variables as well? [Recall: g(E[Yjk|Yj1, Yj2, . . . , Yj,k−1]) = x′
jkβ]
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A.2 MULTIVARIATE MULTI-STATE PROCESSES

Attention may be directed towards two or more multi-state processes when

• studying effects of health promotion interventions on knowledge, attitudes, and behaviour

Knowledge Poor Fair Good Very Good

Behaviour Smoker Quitter

• examining deterioration of paired organ systems (opthalmology, nephrology, etc.)

Left Eye Acuity Good Fair Poor

Right Eye Acuity Good Fair Poor
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A.2 MULTIVARIATE MULTI-STATE PROCESSES - CTD

• when assessing observer agreement on dynamic disease processes

Normal Abnormal

(j = 1)
Process 1

Normal Abnormal

(j = 2)
Process 2

Interest may lie in

• characterizing how these processes change together or track one another

• estimating or testing global effects

• improving efficiency through joint modeling

ISSUES TO CONSIDER
Insight can be gained in the nature of the associations via latent variables

• correlated random effects on transition probabilities

• associations induced by fully specified latent multi-state processes

• tractability of likelihood functions? Framework for model fitting and inference?
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NOTATION FOR LONGITUDINAL STUDIES WITH TWO PHASE SAMPLING

Y, X, V

Nonvalidation Sample

∆ = 0

Y, V

Validation Sample

∆ = 1

• Yj response vector

• Vj is a fully observed (auxiliary) covariate vector

• Xj is covariate vector where

∆j = Rj =







1 if Xj is observed (validation sample)

0 otherwise

• f(yj|xj, vj; β) where β is the parameter of interest

• E(Rj|Yj, Xj, Vj) = P (Rj = 1|Yj, Vj) = π(Yj , Vj)

OBJECTIVE: To conduct inferences about β robust to misspecification of covariate distribution(s).
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COMPLETE DATA LOG-LIKELIHOOD

log LC ∝ ∆ [log f(y|x, v; β) + log f(x|v; θ)] + (1 − ∆) [log f(y|x, v; β) + log f(x|v; θ)]

E-STEP : Take expectation of log LC w.r.t. f(X|Y, V ; β̃(k−1), θ̃(k−1))

EX |Y,V (logLC) = ∆ [log f(y|x, v; β) + log f(x|v; θ)] +

(1 − ∆)
{

EX |Y,V [log f(y|X, v; β); β̃(k−1), θ̃(k−1)] + EX |Y,V [log f(X|v; θ); β̃(k−1), θ̃(k−1)]
}

M-STEP : Solve

∂EX |Y,V (log LC)

∂β
= ∆ · S(y|x, v; β) + (1 − ∆) · EX |Y,V [S(y|X, v; β); β̃(k−1), θ̃(k−1)] (1)

∂EX |Y,V (log LC)

∂θ
= ∆ · S(x|v; θ) + (1 − ∆) · EX |Y,V [S(X|v; θ); β̃(k−1), θ̃(k−1)]



B. MISSING COVARIATES IN LONGITUDINAL STUDIES 8

B.1 TWO-PHASE STUDIES WITH REPEATED MEASURES DESIGNS

Responses Yj1 Yj2 · · · YjK

Covariates xj1 xj2 · · · xjK

Auxiliary Covariates vj1 vj2 · · · vjK

Indicator Rj1 Rj2 · · · RjK

ISSUES TO CONSIDER

Factors that should affect the sampling probabilities for xjk given (yjk, vjk) and process history for

• random effect models

• marginal models

• transitional models

Robustness and efficiency trade-offs between likelihood and estimating function approaches
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B.2 NONCOMPLIANCE IN LONGITUDINAL STUDIES

2.5% RATE
100 DEATHS
4000 PATIENTS

A.NCOMP

0.83% RATE
50 DEATHS
6000 PATIENTS

A.COMP

2.5% RATE
100 DEATHS
4000 PATIENTS

B.NCOMP

1.67% RATE
100 DEATHS
6000 PATIENTS

B.COMP

NON−COMPLIERS COMPLIERS
‘‘POTENTIAL

NON−COMPLIERS’’
‘‘POTENTIAL
COMPLIERS’’
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A

2.0% RATE
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10,000 PATIENTS

B

TREATED CONTROL

PATIENTS
20,000

RANDOMIZE
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B.2 NONCOMPLIANCE IN LONGITUDINAL STUDIES

There are a variety of ways in which patients can become non-compliant regarding their assigned medication.

To simplify things, let us suppose that patients can be classified as compliant or non-compliant (Cuzick et al. 1997).

Responses Yj1 Yj2 · · · YjK

Treatment xj1 xj2 · · · xjK

Compliance Indicator cj1 cj2 · · · cjK

ISSUES TO CONSIDER

Need to specify models Cj given covariates

Counterfactual arguments may be helpful to gain estimates of treatment effect under good compliance

Fully specified models for Y j ?
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C.1 MARKOV MODELS UNDER PANEL OBSERVATION
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‘‘Panel Data’’



C. LATENT VARIABLES AND MULTISTATE DATA 12

C.1 MIXED MARKOV MODELS UNDER PANEL OBSERVATION: JOINT DAMAGE IN RHEUMATOLOGY

1 2 3 4

λ λ λ
1 2 3

State 1: Normal or soft tissue swelling State 2: surface erosions
State 3: joint space narrowing State 4: disorganization/damage/surgery

Data for a single subject may be represented as follows

t t0 1

Y(t 0 Y(t 1 Y(t 2)) )

t 4
)Y(t 4

t 3
Y(t 3)

t 2

• t0 < t1 < · · · < tm are observation times (in, say months since clinic entry)

• Y (tr) is the state occupied at time tr (e.g. Y (t0) = 1 if joint starts out normal or with soft tissue swelling).

• predictor variables (e.g. demographic factors, family history, genetic data)

• time-dependent predictor variables only observed at t0, t1, ..., tm
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C.1 MIXED MARKOV MODELS UNDER PANEL OBSERVATION: JOINT DAMAGE IN RHEUMATOLOGY

Consider

1 2 3 4

λ λ λ
1 2 31 2 3α α α

where α = (α1, α2, α3)
′ has a “genuine” trivariate distribution.

• var(αk) reflects degree of variation in k → k + 1 transition intensity

• corr(αk, αk′) reflects extent to which higher k → k +1 intensities are associated with higher k ′ → k′+1 intensities

ISSUES TO CONSIDER

• Likelihood functions are intractable

• MCMC algorithms for dealing with latent random effects ?

• MCMC algorithms for dealing with latent random effects and transition times?
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C.2 CURE RATE MODELS UNDER CURRENT STATUS OBSERVATION

Features of some recent orthopedic surgery trials

• Drugs were injected after surgery:

– Enoxaparin - 12-24 hours

– Fondaparinux - 4-8 hours

• Patients recovered from surgery in the hospital.

• Upon discharge, blood tests were conducted to assess seroconversion.

Med. Time
Study Drug Patients to Discharge

Pentamaks Enoxaparin 365 4.82
(Knee) Fondaparinux 388 5.34

Pentathlon Enoxaparin 984 4.88
(Hip) Fondaparinux 989 5.42
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C.2 CURE RATE MODELS UNDER CURRENT STATUS OBSERVATION

|
Surgery

|
Injection

|
Discharge

&
Blood Test

Variable
Recovery

Period

Antibodies
Developing

Interest is not in when patients seroconvert, but whether they seroconvert.

Suggests the use of a “cure-rate model”
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CURRENT STATUS DATA

• Extreme case of interval censoring.

• All subjects tested for the presence of a condition (seroconversion) at only one point in time (discharge time).

Notation :

• ti = test time (or discharge time) for subject i.

• δi =



















1, if subject i tested positive (seroconverted)

0, otherwise

• F̄ (·) = s.f. for the time to condition onset (seroconversion) for full population.

Likelihood :

LCS =
n

∏

i=1

[

1 − F̄ (ti)
]δi

[

F̄ (ti)
]1−δi

lCS =
n

∑

i=1

{

δi log
[

1 − F̄ (ti)
]

+ (1 − δi) log
[

F̄ (ti)
]}

(2)
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MOVER-STAYER MODELS FOR CURRENT STATUS DATA

Let

• π = probability of seroconversion

• zi =



















1, if patient i will eventually seroconvert

0, otherwise
(Latent Variable)

• P (zi = 1) = π and P (zi = 0) = 1 − π

• S = time to seroconversion (S → ∞ if zi = 0)

• F̄1(·) = s.f. for population of seroconverters (zi = 1)
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LATENT VARIABLE MODELS FOR MORE GENERAL MULTI-STATE PROCESSES

3

1 2
z12λ12

z21λ21

z23λ23z13λ13

Such models are useful to describe unusually long sojourns in particular states.
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UNIVARIATE TRUNCATED DATA
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Univariate Truncated Failure Times

Data on failure times are available only between 1960 and 1980.

• Yi is the year of birth for the ith subject • Xi is the year of event for the ith subject

• Ti = Xi − Yi is the age when event occurs • Bi = [Li, Ri] = [1960− Yi, 1980 − Yi]

Likelihood contribution from subject i:

F (ti|Ti ∈ Bi) = P (Ti ≤ ti|Ti ∈ Bi)
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COMPLETE DATA

•

T_1

T_
2
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An EM Algorithm with Ghost Pairs

Let Ci = B
c
i be the complement of the bivariate truncation region

Let Ci =
⋃J

j=1 Cij

Kij is the number of “ghost pairs” in Cij for pair i

uijk = (uijk1, uijk2)
′ are times for kth ghost pair in Cij, and uij = (u′

ij1, . . . , u
′
ijKij

)′

Yi = (Xi, (uij, Ki1), . . . , (uiJ , KiJ)) is the complete data for the ith pair

Y = (Y1, . . . ,Yn) is the complete data
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COMPLETE DATA LIKELIHOOD

The complete data likelihood can be written as

Lc(θ;Y) =
n

∏

i=1

[

f(ti1, ti2) ×
J
∏

j=1

Kij
∏

k=1

f(uijk)
]

,

• Ki1, . . . , KiJ are unobserved

• uijk times for kth “ghost pair” in Cij are also unobserved

The corresponding complete data log-likelihood is

lc(θ;Y) =
n

∑

i=1

[

log f(ti1, ti2) +
J

∑

j=1

Kij
∑

k=1

log(f(uijk))
]

.
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SOME ROLES OF LATENT VARIABLE MODELS

• Sometimes latent variables are introducted simply to facilitate estimation

• Role is sometimes simply to increase flexibility of a model - interpretation of latent process may not be critical

• Sometimes interpretation of parameters hinges critically on notion of a latent process

QUESTIONS

• How complex should models for latent processes get (parameter driven versus data driven models)?

• Diagnostics for latent class models?

• Sensitivity analyses may play an important role


