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Bartholomew (1985) and Bartholomew & Knott (1999) use the
term latent variable models in a general setting. There are two
sets of variables, manifest (observed) variables x and latent
(unobserved) variables ξ with a joint distribution. If the marginal
distribution h(ξ) of ξ and the conditional distribution g(x | ξ) of
x for given ξ exist, then the marginal distribution f(x) of x must
be

f(x) =
∫

g(x | ξ)h(ξ)dξ . (1)

This is a tautology in the sense that it always holds if the
distributions exist.
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However, the idea of latent variable models is that the manifest
variables should be independent for given latent variables, i.e.,
the latent variables should account for all dependencies among
the manifest variables. Thus,

g(x | ξ) =
p∏

i=1

g(xi | ξ) , (2)

so that

f(x) =
∫ p∏

i=1

g(xi | ξ)h(ξ)dξ . (3)

To specify a latent variable model, one must therefore specify
h(ξ) and g(xi | ξ) for all i. The manifest variables may be
continuous or categorical and the latent variables may be
continuous or categorical. Thus there may be four classes of
latent variable models:
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Classification of Latent Variable Models

Manifest Variables

Latent Variables Continuous Categorical

Continuous Factor Analysis Models Latent Trait Models

Categorical Latent Profile Models Latent Class Models
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Ordinal Variables

Observations on an ordinal variable represent responses to a set
of ordered categories, such as a five-category Likert scale. It is
only assumed that a person who selected one category has more
of a characteristic than if he/she had chosen a lower category, but
we do not know how much more. Ordinal variables are not
continuous variables and should not be treated as if they are. It is
common practice to treat scores 1, 2, 3, . . . assigned to categories
as if they have metric properties but this is wrong. Ordinal
variables do not have origins or units of measurements. Means,
variances, and covariances of ordinal variables have no meaning.
The only information we have are counts of cases in each cell of a
multiway contingency table. To use ordinal variables in structural
equation models requires other techniques than those that are
traditionally employed with continuous variables.
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• Models

A Factor Models with Ordinal Indicators

B Factor Models with Ordinal Indicators and Covariates

C Factor Models with Ordinal and Continuous Indicators

D Factor Models with Ordinal and Continuous Indicators
and Covariates

E General Structural Equation Models

• Data

c Cross-sectional Data

l Longitudinal Data

m Multiple Group Data

• Methods

BIV Bivariate Information Methods

FUL Full Information Methods
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Methods. Models and Data

Bivariate Information Methods

Models

Data A B C D E

c M S S S S

l S S S S S

m S ? ? ? ?

M=Much, S=Some, ?=Don’t know
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Full Information Methods

Models

Data A B C D E

c S L N N N

l N N N N N

m N N N N N

S=Some, L= Little, N=Nothing
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Bivariate Information Methods

Model types A and B can be handled by using polychoric correlation

or covariance matrices. This can be done for all three data types, see

ordinal.pdf (81 pages) downloadable at

www.ssicentral.com/lisrel/ordinal.htm.

Model types C, D, and E can be handled using polychoric and

polyserial correlations and covariates.

These models and approaches are very easy to apply compared with

full information methods. The only disadvantage seems to be that they

are three-stage procedures.

To avoid this I suggested (IMPS 2003) a BIML method in which all

estimates are obtained by minimizing a single objective function. So

far this has been developed for the exploratory factor analysis model

(type A) but I am currently working on the extension to confirmatory

factor analysis models with and without covariates (type B).
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Figure 1: MIMIC Model for Efficacy and Respons



Karl G Jöreskog SAMSI Kickoff Paper

Slide 11

�

�

�

�
EDUCAT

�
�
�
�
�
�
�
���

�

INCOME
�
�
�
���

�
�
�
���

URBRUR

�
�
�
�
�
�
���

AGE �������������

�
�
�
���

�
�
�
�
�
�
�
�
�
�
��

GENDER
��������������
�
�
�
�
�

���

	
 ��CognMob

�

�
�
�
�
�
�
�
�
�
�
�
�
�� 

�������������

�

	
 ��USupport

�
�
�
�
��

�������������

�������������

	
 ��ASupport
	
	
	
		


�
�
�
���

�

CONVINCE

PDISCUSS

BENEFIT

MEMBERSH

REGRET

UNIFICAT

�

�

�

�

�

�



Karl G Jöreskog SAMSI Kickoff Paper

Slide 12

�

�

�

�

Full Information Methods

Most of the full information methods are limited to factor models

(type A) There is a lot of literature on IRT models which usually

assume a single latent variable. The multidimensional case have been

discussed e.g., by Moustaki & Knott (2000) and a comparison of these

methods with the three-stage methods is presented in Jöreskog &

Moustaki (2001). Moustaki (2003) extended these methods to allow for

covariate effects on manifest and latent variable. This method is

described in Moustaki, Jöreskog & Mavridis (2004) who compare them

with the three-stage methods on the basis of two examples. The

biggest problem with the full information methods are associated with

numerical integration. The integrals can be approximated by

Gauss-Hermite quadrature, adaptive quadratic points, Monte Carlo

methods, Laplace approximation, and Bayesian MCMC methods.

There seems to be a lot of ongoing work on these methods.
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Notation

i = 1, 2, . . . , p variables (4)

s = 1, 2, . . . ,mi ordered categories (5)

j = 1, 2, . . . , k factors (6)
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Models

γ(i)
s (ξ) = F (α(i)

s −
k∑

j=1

βijξj) (7)

−∞ = α
(i)
0 < α

(i)
1 < α

(i)
2 · · · < α(i)

mi−1
< α(i)

mi
= ∞

NOR : F (t) = Φ(t) =
∫ t

−∞

1√
2π

e−
1
2 u2

du (8)

POM : F (t) = Ψ(t) =
et

1 + et
(9)
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Models and Methods

Models

Methods NOR POM

BIML NOR-BIML POM-BIML

FIML NOR-FIML POM-FIML
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FIML

xr = (x1 = a1, x2 = a2, . . . , xp = ap) (10)

Pr(xr | ξ) = πr(ξ) =
p∏

i=1

π(i)
ai

(ξ) =
p∏

i=1

[γ(i)
ai

(ξ) − γ
(i)
ai−1(ξ)] (11)

πr(θ) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
πr(ξ)h(ξ)dξ (12)

FFIML(θ) =
∑

r

pr[ln pr − ln πr(θ)] =
∑

r

pr ln[pr/πr(θ)] (13)
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BIML

π
(gh)
ab (ξ) = π(g)

a (ξ)π(h)
b (ξ) = [γ(g)

a (ξ) − γ
(g)
a−1(ξ)][γ(h)

b (ξ) − γ
(h)
b−1(ξ)]

(14)

π
(gh)
ab (θ) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
π

(gh)
ab (ξ)h(ξ)dξ (15)

FBIML(θ) =
p∑

g=2

g−1∑
h=1

mg∑
a=1

mh∑
b=1

p
(gh)
ab ln[p(gh)

ab /π
(gh)
ab (θ)] (16)



Karl G Jöreskog SAMSI Kickoff Paper

Slide 18

�

�

�

�

Note that under NOR

π
(gh)
ab (θ) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
π

(gh)
ab (ξ)h(ξ)dξ (17)

=
∫ τ(g)

a

τ
(g)
a−1

∫ τ
(h)
b

τ
(h)
b−1

φ2(u, v; ρgh)dudv , (18)

with τ
(g)
s replaced by τ

(g)
s − ∑r

l=1 bglxl, and with
ρgh =

∑k
l=1 λglλhl, using standardized parameters.
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Minimization Algorithm

∂F (θ)/∂θ = −
∑

r

[pr/πr(θ)]∂πr(θ)/∂θ (19)

∂2F/∂θ∂θ′ =
∑

r

{−[pr/πr(θ)] ∂2πr(θ)/∂θ∂θ′ (20)

+ [pr/π2
r(θ)]∂πr(θ)/∂θ ∂πr(θ)/∂θ′} (21)

plim pr = πr(θ)
∑

∂πr(θ)/∂θ = 0
∑

∂π2
r (θ)/∂θ∂θ′ = 0

plim∂2F/∂θ∂θ′ = [1/πr(θ)]∂πr(θ)/∂θ ∂πr(θ)/∂θ′ (22)

θ(s+1) = θ(s) − α(s)E(s)g(s) (23)
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BIML vs FIML

• If the model holds both BIML and FIML give consistent
estimates.

• BIML and FIML estimates are often quite close.

• BIML is computationally faster than FIML. In the efficacy
example there is at least a 50% reduction in computer time.

• Asymptotic standard errors can be provided both for BIML
and FIML estimates.

• Fit can be evaluated from all univariate and bivariate
marginal distributions for both BIML and FIML.
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Ordinal Variables with Two Types of Covariates
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Loglikelihood

L =
n∑

a=1

log f(ya | xa, wa)

=
n∑

a=1

log
∫ +∞

−∞
· · ·

∫ +∞

−∞

p∏
i=1

g(yai | ξ, xa)h(ξ | wa)dξ
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Factor loadings Regression coefficients

Item IRT PLA IRT PLA IRT PLA IRT PLA

α̂i1 λ̂i1 β̂i1 b̂i1 β̂i1 b̂i1 β̂i1 b̂i1

Labour Liberal Other

Appointment .86 .71 .39 .34 .31 .27 .20 .18

AmountTime .93 .85 .38 .36 .17 .14 .19 .15

ChooseGP .91 .77 .20 .17 -.11 -.09 .07 .07

Quality .89 .78 .34 .30 .22 .20 .39 .37

WaitingArea .80 .61 .28 .23 .01 .03 .35 .25

Table 1: Structural parameters

IRT PLA

γ̂i d̂i

Female -.06 (.04) -.07 (.07)

26-44 .19 (.10) .18 (.12)

45-64 .49 (.11) .49 (.13)

65+ .70 (.11) .70 (.14)
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1554 people in USA responded to the following statements

NOSAY People like me have no say in what the government does

VOTING Voting is the only way that people like me can have any

say about how the government runs things

COMPLEX Sometimes politics and government seem so complicated

that a person like me cannot really understand what is going on

NOCARE I don’t think that public officials care much about what

people like me think

TOUCH Generally speaking, those we elect to Parliament lose touch

with the people pretty quickly

INTEREST Parties are only interested in people’s votes but not in

their opinions
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Responses to these questions were

1 agree strongly

2 agree

3 disagree

4 disagree strongly
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Full Information

Three ways of viewing the data

• as a 4 × 4 × 4 × 4 × 4 × 4 contingency table with 4096 cells.
Actually 3620 are empty (0).

• as a data matrix of order 1554 × 6 with elements 1, 2, 3, 4.

• there are 476 different response patterns occuring in the
sample.
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97 2 2 2 2 2 2

70 3 3 2 3 3 3

49 3 2 2 2 2 2

45 3 3 3 3 3 3

45 3 3 2 2 2 2

40 3 2 2 3 3 3

32 3 3 2 3 2 2

31 3 3 2 3 2 3

25 2 2 1 2 2 2

.

.

.

1 3 3 4 2 1 1

1 1 4 4 2 1 1

1 2 3 3 3 2 3
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Bivariate Information

Viewing variables pairwise, there are 15 bivariate contingency
tables of order 4 × 4.

VOTING COMPLEX

------------------ ------------------

NOSAY AS A D DS AS A D DS

------------------ ------------------

AS 69 51 27 13 83 52 16 9

A 80 297 85 9 120 287 55 9

D 92 275 413 24 89 491 201 23

DS 30 12 51 26 17 51 32 19
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In frequency form the table for NOSAY and VOTING is

413 3 3

297 2 2

275 3 2

92 3 1

85 2 3

80 2 1

69 1 1

51 1 2

51 4 3

30 4 1

27 1 3

26 4 4

24 3 4

13 1 4

12 4 2

9 2 4
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Fitting POM Model by BIML: Parameter Estimates

Unstandardized Thresholds Alpha^(i)_a

NOSAY -2.83845 -0.50556 3.23261

VOTING -1.72822 0.37294 3.27699

COMPLEX -1.70576 1.47399 3.75211

NOCARE -3.48741 0.54805 6.19172

TOUCH -2.78162 1.50425 6.22815

INTEREST -3.15849 1.04893 6.79875

Unstandardized Factor Loadings Beta_ij

NOSAY 1.410

VOTING 0.752

COMPLEX 1.125

NOCARE 2.916

TOUCH 2.267

INTEREST 2.723
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Fitting POM Model by FIML: Parameter Estimates

Unstandardized Thresholds Alpha^(i)_a

NOSAY -2.85617 -0.48551 3.22667

VOTING -1.71519 0.36516 3.24860

COMPLEX -1.69005 1.47493 3.72485

NOCARE -3.66307 0.63525 6.34267

TOUCH -2.79000 1.53425 6.17826

INTEREST -3.07684 1.05251 6.52510

Unstandardized Factor Loadings Beta_ij with Standard Errors

NOSAY 1.424(0.075)

VOTING 0.719(0.054)

COMPLEX 1.119(0.066)

NOCARE 3.114(0.190)

TOUCH 2.279(0.120)

INTEREST 2.631(0.133)
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Standardized vs Unstandardized Parameters

τ (i)
a = α(i)

a /(1 +
k∑

j=1

β2
ij)

− 1
2 (24)

λij = βij/(1 +
k∑

j=1

β2
ij)

− 1
2 (25)

α(i)
a = τ (i)

a /(1 −
k∑

j=1

λ2
ij)

− 1
2 (26)

βij = λij/(1 −
k∑

j=1

λ2
ij)

− 1
2 (27)
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Table 2: Standardized Loadings: One Factor

Item NOR-BIML NOR-FIML POM-BIML POM-FIML

NOSAY .60 .60 .82 .82

VOTING .37 .35 .60 .58

COMPLEX .52 .52 .75 .75

NOCARE .85 .86 .95 .95

TOUCH .77 .77 .91 .92

INTEREST .81 .81 .94 .94
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Model Test

χ2
LR = 2

∑
r

nr ln(pr/π̂r) = 2N
∑

r

pr ln(pr/π̂r) = 2NF (θ̂) (28)

χ2
GF =

∑
r

[(nr − Nπ̂r)2/(Nπ̂r)] = N
∑

r

(pr − π̂r)2/π̂r (29)

Measurement of Fit

RMSEA =

√
χ2 − d

nd
(30)
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2 1 1 1 69. 47.58 51.30 9.65

2 1 1 2 51. 71.21 -34.05 5.74

2 1 1 3 27. 37.72 -18.05 3.05

2 1 1 4 13. 3.32 35.48 28.21

2 1 2 1 80. 102.99 -40.42 5.13

2 1 2 2 297. 211.46 201.78 34.60

2 1 2 3 85. 146.64 -92.70 25.91

2 1 2 4 9. 14.52 -8.61 2.10

2 1 3 1 92. 109.86 -32.64 2.90

2 1 3 2 275. 314.45 -73.74


