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ABSTRACT
Motivation: The immunogenicity of peptides depends on their
ability to bind to MHC molecules. MHC binding affinity pre-
diction methods can save significant amounts of experimental
work.The class II MHC binding site is open at both ends, mak-
ing epitope prediction difficult because of the multiple binding
ability of long peptides.
Results: An iterative self-consistent partial least squares
(PLS)-based additive method was applied to a set of 66 pep-
tides no longer than 16 amino acids, binding to DRB1*0401. A
regression equation containing the quantitative contributions
of the amino acids at each of the nine positions was gener-
ated. Its predictability was tested using two external test sets
which gave rpred = 0.593 and rpred = 0.655, respectively.
Furthermore, it was benchmarked using 25 known T-cell epi-
topes restricted by DRB1*0401 and we compared our results
with four other online predictive methods.The additive method
showed the best result finding 24 of the 25 T-cell epitopes.
Availability: Peptides used in the study are available
from http://www.jenner.ac.uk/JenPep. The PLS method is
available commercially in the SYBYL molecular model-
ling software package. The final model for affinity predic-
tion of peptides binding to DRB1*0401 molecule is avail-
able at http://www.jenner.ac.uk/MHCPred. Models developed
for DRB1*0101 and DRB1*0701 also are available in MHC-
Pred.
Contact: darren.flower@jenner.ac.uk

INTRODUCTION
The recognition of antigen peptides by T-cell receptors (TCR)
is a central event in cellular immunity against pathogens. The
immunogenicity of peptides is strongly influenced by their
ability to bind to MHC molecules. Because of this, T-cell epi-
tope predictive algorithms are, in practice, based on binding
affinity prediction. A broad spectrum of predictive methods
is now available (Flower et al., 2002). Beginning with early
motif searching (Rammensee et al., 1995; D’Amaro et al.,
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1995; Meister et al., 1995) and different scoring schemes
based on the hypothesis of independent binding of side
chains (IBS-hypothesis) (Parker et al., 1994), through arti-
ficial neural networks (ANN) (Honeyman et al., 1998; Brusic
et al., 1998) to the free energy scoring function FRESNO
(Rognan et al., 1999). More recent methods include posi-
tional scanning— synthetic combinatorial libraries (PS-SCL)
(Udaka et al., 2000) and 3D-QSAR studies (Doytchinova and
Flower, 2001, 2002a–c). Although most methods have been
developed for MHC class I binding peptides, a set of scor-
ing matrices for class II peptides is also available (Hammer
et al., 1994; Marshall et al., 1995; Southwood et al., 1998;
Brusic et al., 1998; Borrás-Cuesta et al., 2000; Mallios, 2001).
The incorporation of these predictive methods in the initial in
silico step of epitope identification can save great amounts of
subsequent experimental work and is, therefore, increasingly
important in the process of T-cell epitope search.

Peptides that bind to MHC class II molecules are usually
between 10 and 20 residues long, with sizes between 13 and
16 amino acids being the most frequently observed (Rudensky
et al., 1991; Hunt et al., 1992; Chicz et al., 1992, 1993). X-ray
data from peptide/MHC class II (Dessen et al., 1997) and
TCR/peptide/MHC class II complexes (Hennecke and Wiley,
2002) indicate that nine amino acids are bound in an extended
conformation deep in the binding groove of HLA-DR4. A
dozen hydrogen bonds between MHC α-helices and peptide
main chain carbonyl and amide groups are formed. There is
one deep pocket that binds the side chain at peptide position 1
(P1) and there are four shallow pockets that bind side chains
at positions P4, P6, P7 and P9. Side chains at positions P2,
P3, P5 and P8 project prominently toward the T-cell. The
peptide binding groove of class II molecules is open at both
ends and this allows a given peptide to bind in many different
ways. This multiple binding ability of peptides results in a
lower accuracy for prediction methods compared with those
for class I peptides (Brusic et al., 1998).

Recently, an additive method for binding affinity predic-
tion was developed (Doytchinova et al., 2002). The method is
based on the assumption that the binding affinity of a peptide
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could be presented as a sum of the contributions of the amino
acids at each position and certain interactions between them.
The method is universal and can be applied to any peptide–
protein interaction. It has been applied to 12 different MHC
class I molecules (Doytchinova et al., 2002; Guan et al.,
2003; Doytchinova and Flower, 2003) and these models are
included in a web site called MHCPred, which is accessible via
the internet: http://www.jenner.ac.uk/MHCpred (Guan et al.,
2003). In the present study we have applied the method to a
set of 82 peptides of 16 amino acids or less, which bind to the
HLA-DRB1*0401 molecule. In order to solve the problem of
multiple binding an iterative self-consistent (ISC) PLS-based
algorithm was used to select the binding set. Eighty percent
of the peptides formed the training set and 20% a test set.
Another set of peptides, all longer than 16 amino acids, was
used as a second test set. The scoring model has been included
in the MHCPred web site.

SYSTEMS AND METHODS
Peptide database
The JenPep database (Blythe et al., 2002), URL:
http://www.jenner.ac.uk/JenPep, was used as a source for pep-
tide sequences and their binding affinities to the MHC class
II molecule HLA-DRB1*0401. The binding affinities (IC50)

were originally assessed by a quantitative assay based on
the inhibition of binding of a radiollabelled standard pep-
tide to detergent-solubilized MHC molecules (Ruppert et al.,
1993; Sette et al., 1994). A set of 96 peptides was obtained.
In order to make tractable the calculation of multiple sub-
sequence binding, only peptides with 16 or less amino acids
were chosen. They were 82 such peptides and these were
divided into training and test sets. Sixteen peptides (20% )
were randomly selected to cover the total affinity range and
used as a test set for external validation. The other 66 peptides
(80% ) were used as a training set. The remaining 14 peptides
longer than 16 amino acids were used as an additional test set.

Additive method, PLS method, ‘leave-one-out’
cross-validation
Each nonamer was transformed into a binary bit string of
180 bins (9 positions × 20 amino acids). A term is equal
to 1 when a certain amino acid exists at a certain position, and
0 when it is absent. To simplify the matrix, only amino acid
contributions were taken into account. 1–2 and 1–3 interac-
tions were neglected. To reduce the multiple binding options
only subsequences bearing anchor amino acids (Y, F, W, L,
I, M and V) at position 1 were selected. The initial matrix
consists of 185 rows and 181 columns (180 x variables + 1y

variable). The matrix was solved by the partial least squares
(PLS) method.

As a projection method PLS handles data matrices with
more variables than observations very well, and the data can be

both noisy and highly collinear. In this situation, conventional
statistical methods like multiple regression produce a formula
that fits the training data but is unreliable for prediction. PLS
forms new x variables, named principal components, as linear
combinations of the old ones, and then uses them as predict-
ors of the biological activity (Wold, 1995). We used the PLS
method as implemented in the QSAR module of SYBYL6.7
(Tripos Inc.). The IC50 values were presented as negative
logarithms and were used as the dependent variable y. The
scaling method was set to ‘none’. The column filtering was
switched off. The predictive ability of the models was assessed
by ‘leave-one-out’ cross-validation and by external validation
using a test set.

Cross-validation (CV) is a practical and reliable method for
testing the predictive power of the models. It has become a
standard in PLS analysis and is incorporated in all available
PLS software (Wold, 1995). In principle, CV is performed by
dividing the data into a number of groups, developing a num-
ber of parallel models from the reduced data with one of the
groups omitted, and then predicting the biological activities
of the excluded compounds. When the number of the groups
omitted is equal to the number of the compounds in the set,
the procedure is named ‘leave-one-out’ (LOO). The predict-
ive power of the models was assessed by the cross-validated
coefficient q2 and the standard error of prediction (SEP):

q2 = 1 − PRESS

SSQ

SEP =
√

PRESS

p − 1

where PRESS is the predictive sum of squares
[ ∑n

i=1(pIC50×
exp − pIC50pred)2

]
, SSQ—the sum of squares of pIC50exp

corrected for the mean
[ ∑n

i=1(pIC50exp −pIC50mean)2], p is
the number of the peptides omitted, pIC50pred is that predicted
by the LOO-CV value. The optimal number of components
(NC) found by LOO-CV was used in the non-cross-validated
models, which were assessed by the explained variance r2.
The experimental versus predicted binding affinities of the
test peptides were fitted by linear regression and a rpred was
determined.

ALGORITHM
Data flow in the iterative self-consistent (ISC) PLS-based
additive method is shown in Figure 1. The training set of
66 long peptides is presented as a set of nonamers accompan-
ied by the pIC50 values of the parent peptide. Only nonamers
bearing anchor amino acids (Y, F, W, L, I, M, V) at posi-
tion 1 were selected. The matrix is solved by PLS. LOO-CV
is applied to extract the optimum number of components sub-
sequently used to generate the non-cross-validated model. The
last model is used to predict pIC50 values and a new set is
extracted. The best predicted nonamers were selected for each
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Fig. 1. Data flow in the ISC PLS-based additive method.

peptide, i.e. those with the lowest residual between the exper-
imental and predicted pIC50. The new set is compared with
the previous one and if they are the same the final model
is obtained. Otherwise, the selection procedure is repeated.
The coefficients in the final non-cross-validated model rep-
resent the quantitative contributions of each amino acid at
each position.

IMPLEMENTATION
The first model had poor predictivity: q2 = 0.152, NC =
1, r2 = 0.396, n = 185. Self-consistency was achieved on the
seventh iteration. The final model had excellent predictivity
with q2 = 0.716, NC = 4, r2 = 0.967. The coefficients of
the final model are shown in Table 1.

All class II prediction methods must overcome the problem
of the multiple binding ability of the peptides. This arises both
from the indeterminacy of the problem—we do not know a
priori which subsequence is the dominant binder—and from
the possible degeneracy of the binding process itself. Where
a single dominant binding sequence is absent, the measured

affinity is a canonical average of the binding of several sub-
sequences. These phenomena arise from the binding groove
of class II molecules being open at both ends. We may posit
that, from a thermodynamic viewpoint, the actual nonameric
binding subsequence should have the highest pIC50 or low-
est binding energy, among all the nonamers originating from
the same long parent peptide. However, our analysis of the
training set indicates that the predicted value closest to the
experimental pIC50, is seldom the highest predicted value. We
tried three different selection rules to deal with this problem
when applied to the test sets: mean, highest value (max) and
a combination of both (combi). The last rule selects the mean
pIC50 when the difference between the highest and lowest pre-
dicted pIC50 is less than one log unit. Otherwise, it selects the
highest predicted value. The statistics are shown in Table 2.
For both test sets the highest predictivity is given by the com-
bination rule with rpred = 0.593 (test set I) and rpred = 0.655
(test set II). The graphs of best models for the test sets are
shown in Figure 2. The performance of the combination rule
is not surprising, because when an easily distinguished good
binder is not available in the peptide sequence, the bind-
ing affinity is a degenerate average of affinities from several
binding subsequences.

DISCUSSION
Using single amino acid substituted analogs of the HA 307–
319 peptide, Sette et al. (1993) defined an HLA-DRB1*0401-
specific motif. This motif requires an aromatic or aliphatic
anchor residue in position 1 (Y, W, F, L, I, V, M), and another
anchor residue in position 6, defined as either a hydroxyl (S or
T) or hydrophobic (L, V, I, or M) residue. In addition, no
positive charges (K or R) are allowed in position 4 or 7 and
no charges, either positive or negative (K, R, D or E) are
allowed in position 9. Using an Y1-anchored peptide library
Hammer et al. (1994) developed the first scoring scheme for
prediction of affinity to HLA DRB1*0401. Marshall et al.
(1995) developed a method based on the relative contribu-
tions of the 20 naturally occurring amino acids at the central
11 positions of a 13-residue monosubstituted polyalanine
peptide. Southwood et al. (1998) applied the polynominal
method (Gulukota et al., 1997) to derive a scoring mat-
rix. A genetic algorithm (GA) was successfully applied by
Brusic et al. (1998) to discriminate between binders and non-
binders. Comparing different algorithms Borrás-Cuesta et al.
(2000) deduced a general motif for the prediction of binding
to HLA-DR molecules. Mallios (2001) introduced an iter-
ative stepwise discriminant analysis (SDA) meta-algorithm
to classify peptides initially into binders and non-binders and
later into non-binders, intermediate and high binders (Mallios,
2001). The ISC algorithm proposed here uses a related iter-
ative procedure to select the best predicted binders, but it
incorporates the PLS method, a robust multivariate statistical
technique, for model generation.
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Table 1. Additive model for binding affinity prediction to DRB1*0401 (the constant equals to 6.169)

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8 Position 9

A 0 −0.130 −0.013 0.253 0.296 −0.223 −0.247 0.120 0.051
C 0 0 0 0 0 0 0 0 −0.128
D 0 −0.137 −0.246 −0.127 −0.093 −0.125 0.080 0.001 −0.013
E 0 −0.032 −0.008 −0.140 −0.271 −0.133 −0.032 0 0
F 0.136 −0.165 0.006 0.113 0 0 −0.227 0.103 −0.084
G 0 0.045 −0.063 0.013 0.038 −0.081 0.068 −0.025 −0.071
H 0 0.028 −0.128 0.039 0 −0.005 0 −0.093 0.114
I −0.361 −0.051 −0.055 0.046 −0.029 −0.013 0 −0.173 −0.018
K 0 0.066 0.125 0 −0.056 −0.142 0.151 0.036 −0.005
L −0.482 −0.068 0.330 −0.359 −0.206 0.194 0.178 0.303 −0.223
M −0.005 0 0 0.193 0 −0.012 0 0.047 0
N 0 0.055 0.081 −0.085 0.284 0 −0.016 0 0.247
P 0 −0.072 0.050 0 0.213 −0.103 0.229 0.061 0.125
Q 0 −0.104 0.293 0.157 −0.014 0.035 −0.100 −0.032 0.061
R 0 0.193 −0.138 0 −0.048 −0.189 −0.174 −0.214 −0.064
S 0 0.071 −0.140 0.001 −0.284 0.313 0.042 −0.050 0.020
T 0 0 0 −0.072 0.127 0.207 −0.096 0 −0.016
V 0.297 0.238 −0.044 −0.031 −0.070 0.277 0.225 −0.154 0.004
W 0.272 −0.159 −0.012 0 0.114 0 0 0 0
Y 0.145 0.221 −0.037 0 0 0 −0.082 0.069 0

Table 2. Statistics of the test sets

Parameter Test set I Test set II

n 16 14
rpred 0.547 0.480

(mean)
rpred 0.459 0.596

(max)
rpred 0.593 0.655

(combi)

We compared the scores for the amino acids at each posi-
tion for each of the five scoring matrices: Hammer’s (Hammer
et al., 1994) (code H1994), Marshall’s (Marshall et al., 1995)
(code M1995), Southwood’s (Southwood et al., 1998) (code
S1998), Brusic’s (Brusic et al., 1998) (code B1998), Borrás-
Cuesta’s (Borrás-Cuesta et al., 2000) (code BC2000) and ours
(D2003). No overall correlation was found between them

(Table 3). Only the BC2000 matrix shows some correla-
tion with H1994 and B1998 scoring functions (r > 0.5).
The coefficients derived by the additive method (D2003) do
not correlate well with the other scores except for BC2000.
The correlation analysis for each position (data not shown)
indicated that only for position 1 there is a correlation
(Rmean = 0.70). The correlation coefficients for the remaining
positions ranged from 0.49 for position 6 to 0.23 for posi-
tion 5. Nevertheless, a consensus exists regarding the amino
acid preferences at the anchor positions 1 and 6. Although
Leu and Ile are considered as anchors at position 1 most of
the scoring matrices (H1994, M1995, B1998, S1998) indicate
that they make a negative contribution to the affinity. In the
present study, Phe, Tyr, Trp and Val were found to contrib-
ute significantly to the affinity and Leu and Ile to contribute
deleteriously. Met was found to make no significant contribu-
tion. Ser, Thr and Val are favoured amino acids at position 6
according to our model (D2003) and others (H1994, M1995,
S1998). For position 4, Met is a preferred amino acid (H1994,
B1998, S1998, BC2000), but our study shows that Ala and
Gln are also well accepted here. No agreement exists for the
favoured amino acid at position 7. Preferences are given to
Met (H1994, S1998, B1998, BC2000), Asn (B1998), Cys
(B1998), His (S1998), Val (H1994) and Tyr (M1995). Accord-
ing to our study Pro and Val were found to be favoured at this
position. Asp and Glu at position 9 are deleterious for binding
(H1994, M1995, S1998, B1998). In our training set, selec-
ted by the ISC algorithm, there was only one peptide bearing
Asp at position 9 and no peptide with Glu at this position.
A great variety of preferred amino acids was identified at the
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Table 3. Correlation coefficients (R) between different predictive methods (n is the number of the common amino acids)

H1994 M1995 S1998 B1998 BC2000 D2003
(Hammer
et al., 1994)

(Marshall
et al., 1995)

(Southwood
et al., 1998)

(Brusic et al.,
1998)

(Borrás-Cuesta
et al., 2000)

This study

H1994 n = 159
(Hammer et al., 1994) R = 1.000
M1995 n = 159 n = 167
(Marshall et al., 1995) R = 0.138 R = 1.000
S1998 n = 148 n = 156 n = 156
(Southwood et al., 1998) R = 0.154 R = 0.057 R = 1.000
B1998 n = 159 n = 167 n = 156 n = 56
(Brusic et al., 1998) R = 0.274 R = 0.072 R = 0.170 R = 1.000
BC2000 n = 36 n = 38 n = 35 n = 38 n = 38
(Borrás-Cuesta et al., 2000) R = 0.590 R = 0.454 R = 0.282 R = 0.546 R = 1.000
D2003 n = 130 n = 131 n = 124 n = 131 n = 28 n = 131
This study R = 0.258 R = 0.056 R = 0.200 R = 0.098 R = 0.450 R = 1.000

remaining positions (2, 3, 5 and 8). This is not surprising as the
side chains of the amino acids at these positions are oriented
toward the T-cell and have less influence on binding to the
MHC molecule.

To benchmark our method, 25 known T-cell epitopes bind-
ing to DRB1*0401 were collected from JenPep and evaluated
by different predictive methods available online: SYFPEITHI
(Rammensee et al., 1999), MHC-Thread (Brooks, 1999,
http://www.csd.abdn.ac.uk/∼gjlk/MHC-Thread/), RANK-
PEP (Reche et al., 2002), ProPred (Singh and Raghava,
2001). The additive method, as implemented in MHCPred
(Guan et al., 2003), was used to make predictions. The
scores are shown in Table 4. Comparison of these methods
proved problematic because of the different scoring func-
tions. Ideally, we would wish to compare the enrichment in
predicted binders versus a random selection, where whole
proteins had been analysed for T-cell epiotopes using over-
lapping peptides. Unfortunately, fully controlled experiments
such as this are costly and are seldom performed. Instead,
we focussed on prediction of known class II restricted epi-
topes. As SYFPEITHI and MHC-Thread deal with peptides
longer than 15 or 13 amino acids, respectively, scores for some
epitopes could not be calculated. For these two methods the
whole proteins were evaluated and the top 50% binders were
considered as epitopes. SYFPEITHI found 10 from 13 epi-
topes and MHC-Tread identified 10 out of 19. RANKPEP
detects 20 of the 25 epitopes at the default binding threshold
of 4.85. Using a score above 0 as a de facto threshold, 19 of
the evaluated by ProPred peptides had positive scores and
the remaining were negative. The predictions made by the
additive method showed that 24 of the 25 epitopes have
IC50 values below 500 nM and only one peptide has IC50

value slightly higher than 500 nM (577 nM). Affinity below

500 nM is widely accepted as a threshold for potential T-cell
epitopes.

In conclusion, it was shown that the additive method,
as modified in this paper, is a reliable quantitative method
for binding affinity prediction for peptides binding to the
MHC class II molecule DRB1*0401. As this method is
universal, it could be applied to any peptide–protein inter-
action where the overall sequence length is unrestricted but
binding is localized to a fixed, but unknown part, of the
peptide. Rather than simply ranking or qualitatively scoring
peptides, the ISC-PLS additive method produces a quantit-
ative prediction of a real measured affinity. It is easy and
fast to use and interpretation is facile. The model derived
in this paper is implemented in an updated version of
MHCPred.

Models for MHC class II molecules DRB1*0101 and
DRB1*0701 were also developed. The DRB1*0101 model
achieved self-consistency at the 13th iteration and had the fol-
lowing statistics: n = 90, q2 = 0.808, NC = 8, r2 = 0.994.
For the DRB1*0701 model the self-consistency was achieved
on the 11th iteration and its statistics were n = 84, q2 =
0.649, NC = 7, r2 = 0.999. Both models are included in
MHCPred. As data becomes available, other class II models
will be forthcoming.

In the general case, effective and protective vaccines may
be required to act through stimulation of both the humoral
and cellular immune systems. Likewise, T-cell mediated
immunity may function through either or both class I or class
II mediated mechanisms. In order to make computational vac-
cinology a pragmatic and useable reality, we must be able to
predict all aspects of the immune response. Our extension
of the additive method to deal with class II restricted MHC
presentation is a pivotal step toward that goal.
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Table 4. Comparison of MHC class II predictions

T-cell epitope Source Reference SYFPEITHIa MHC-Treadb RANKPEPc ProPredd MHCPrede

QNLLKAEKGNKAAAQR Histone H1-like protein HC1 Gaston et al. (1996) 20f /26g 764f /2366g 4.930h 0.7i 108j

LLESIQQNLLKAEKGN Histone H1-like protein HC1 Gaston et al. (1996) 8/26 1820/2366 9.263 −1.8 48
EYLNKIQNSLSTEWSPCSVT Circumsporozoite protein Calvo-Calle et al. (1997) 18/26 2524/4347 2.828 2.4 90
AGFKGEQGPKGEP Collagen alpha 1(II) chain Fugger et al. (1996) — 367/3435 10.854 −0.4 196
FFRMVISNPAATHQDIDFLI Glutamate decarboxylase, 65 kDa isoform Endl et al. (1997) 18/28 2177/4066 8.067 4.3 104
LPRLIAFTSEHSHF Glutamate decarboxylase, 65 kDa isoform Endl et al. (1997) — 2277/4066 0.27 1.1 129
MNILLQYVVKSFD Glutamate decarboxylase, 65 kDa isoform Wicker et al. (1996) — 2062/4066 4.996 3.48 164
IAFTSEHSHFSLK Glutamate decarboxylase, 65 kDa isoform Wicker et al. (1996) — 1626/4066 5.660 3.4 346
PKYVKQNTLKLATGMRNVP Hemagglutinin [Fragment] Carmichael et al. (1996) 14/28 2478/4922 34.032 4.5 27
GYKVLVLNPSVAAT Genome polyprotein Diepolder et al. (1997) — 1284/— 5.518 4.08 81
KHKVYACEVTHQGLSS Ig kappa chain C region Kovats et al. (1997) 22/26 2253/3871 21.661 2.4 148
KVQWKVDNALQSGNS Ig kappa chain C region Kovats et al. (1997) 22/26 1594/3871 12.485 4.4 89
KVDNALQSGNS Ig kappa chain C region Dong et al. (2000) — — −3.493 −4.9 175
QPLALEGSLQK Insulin Congia et al. (1998) — — 6.683 2.9 577
YVIEGTSKQ Integrin alpha-L Gross et al. (1998) — — 20.971 7.3 182
EFVVEFDLPGIKA 18 kDa antigen McNicholl et al. (1995) — 1582/3066 20.469 2.7 80
LSRFSWGAEGQRPGFGYGG Myelin basic protein Muraro et al. (1997) 22/28 2979/3214 17.707 −1.7 308
WNRQLYPEWTEAQRLD Melanocyte protein Pmel 17 Li et al. (1998) 26/28 1851/3581 9.752 4.3 290
AKYDAFVTALTE Major pollen allergen Pha a 5.3 de Lalla et al. (1999) — — 13.606 −1.5 228
AFNDEIKASTGG Pollen allergen Phl p 5a de Lalla et al. (1999) — — −3.066 −2.6 317
VIVMLTPLVEDGVKQC Protein-tyrosine phosphatase-like N Honeyman et al. (1998) 20/28 1004/4643 2.982 2.3 45
AKFYRDPTAFGSG Proteoglycan link protein Hammer et al. (1995) — 1438/4762 16.850 3.9 342
QYIKANSKFIGITEL Tetanus toxin Reece et al. (1993) 6/28 1011/4513 9.334 1.5 34
QNILLSNAPLGPQFP Tyrosinase Topalian et al. (1996) 8/28 1532/4066 12.504 0.5 60
DYSYLQDSDPDSFQD Tyrosinase Topalian et al. (1996) 22/28 1395/4066 10.128 1.3 205

Known T-cell epitopes with affinity to HLA-DRB1*0401 are evaluated using different epitope prediction programs available free online.
ahttp://syfpeithi.bmi-heidelberg.com/
bhttp://www.csd.abdn.ac.uk/∼gjlk/MHC-Thread/
chttp://www.mifoundation.org/Tools/rankpep.html
dhttp://www.imtech.res.in/ raghava/propred/
ehttp://www.jenner.ac.uk/MHCPred
f The highest score of a 9mer included in the T cell epitope.
gThe highest score of a 9mer included in the whole protein.
hBinding threshold:4.85.
iThe highest score achievable by any peptide is 8.6.
jIC50 value in nM.
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