MHC Polymorphism and Peptide Diversity

Rob J. de Boer Theoretical Biology, UU

Sample a few peptides (9-mers) from a pathogen

Because MHC is polymorphic we all draw different samples $\frac{2}{2}$

Foreign peptides need to be detected

- peptides from pathogen different from self peptides
- \bullet need T cells specific for peptides from pathogen
- peptides from pathogen compete with self peptides
- pathogens evolve escape mutants that fail to be presented by MHC or be detected by T cells

Diversity and Polymorphism in the immune system

Diversity of lymphocytes

- Huge diversity within a host
- At least 10^8 different T & B cell clones

Diversity of self peptides

- 3×10^4 self proteins is 10^7 unique 9-mers Polymorphism of MHC
- Within a host limited number of loci (genes)
- \rightarrow only 6 class I and 12 class II molecules
- Within a **population** > 100 alleles per locus

Diversity of lymphocytes and self peptides

• De Boer & Perelson, PRSL B 1993: Lymphocytes specific to prevent deletion by self tolerance:

$$P_i = 1 - (1 - p)^{R_0(1 - p)^S} \to p \simeq \frac{1}{S}$$

Specificity seems determined by number of self epitopes Large repertoire required if T cells are specific

• Borghans et al. J. Immunol. 1999: Lymphocytes instructed for certain type of response should

not crossreact: be as specific as possible

• Borghans & De Boer, Int. Immunol. 2002: Memory harmful when lymphocytes too crossreactive

Conclusion: lymphocyte diversity

Lymphocyte specificity, and hence diversity, for a large part determined by the diversity of self peptides.

To reliably store the innate instruction/decision into effector cells, and to recall that memory during subsequent decisions for related pathogens, lymphocytes have to be sufficiently specific.

Short (9-mer) peptides exposed on class I MHC

What is the diversity of self peptides?

How much information is present in a 9-mer?

From the webpage of J. Neefjes (NKI)

Number and Uniqueness of self peptides on class I MHC

Count the number of unique peptides of length $6, 7, \ldots$ in human and pathogen proteomes.

- human self is 3×10^4 proteins of 10^7 distinct 9-mers
- 75% occurs only once: most 9-mers are unique

Burroughs, De Boer & Keşmir, Immunogenetics, 2004

Size of self

 $10^7 \ll 20^9$: self is a small fraction of peptide space: overlaps with other "selfs" expected to be small.

Overlaps human and 14 bacteria and 17 viruses

9-mers provide enough information to discriminate: average overlap human and pathogens <1%(Overlaps between unrelated bacteria also 1%)

Overlaps with human depend on evolutionary distance

Overlaps with mouse and rat similar to repeats in human

TAP and proteasome filter the set of presented peptides

Do they discrimate self from non-self?

Processing and presentation of 9-mers

	Proteasome		TAP		MHC ^{A*0204}	
	S %	NS %	S %	NS %	S %	NS %
All 9-mers	33.9	33.6	58.5	61.7	2.6	3.6
Cleaved			71.6	75.7	5.5	7.0
Translocated					3.8	4.5
Processed					6.7	8.1

MHC and TAP have preference for non-self peptides (due to different aa usage between human and foreign)

TAP has a preference for cleaved peptides

MHC has a preference for processed peptides

Co-evolution of specificities at the C terminal

Leucine, tyrosine, fenylanaline, and arginine are preferred at C terminal

Back to the overlaps

9-mer: <1 %, 7-mer: 3 %

Anchor residues are not visible to T cell

Not all information from 9-mer is available to discriminate between peptides

From: http://www.umass.edu/microbio/rasmol

Overlaps when HLA anchor residues are not visible

	9-mer	HLA-A	A*0201	HLA-A*0204		
	overlap	overlap	presented	overlap	presented	
human			3.7%		6.7%	
bact.	0.2 ± 0.1	0.3 ± 0.1	4.2 ± 0.2	0.4 ± 0.1	7.8 ± 0.9	
virus	0.04 ± 0.1	0.3 ± 1.0	4.0 ± 1.0	0.2 ± 0.5	7.4 ± 1.0	

Predict processed & presented peptides for HLA alleles Remove two anchor residues: 9-mer \rightarrow 7-mer, and count overlap on the 7-mer level of the T cells

Information from anchor residues largely preserved

This works thanks to the specificity of the MHC, and because T cells are restricted to typically one MHC.

Conclusion: peptides

- 9-mers contain sufficient info for self:non-self discrimation \rightarrow 9-mer overlaps < 1%
- on each MHC several viruses only ten presented foreign peptides among 10⁵ presented self peptides
- MHC specificity sufficient to preserve info from anchor residues
- MHC restriction reduces the overlap between self and foreign and reduces number of self peptides per T cell specificity

MHC polymorphism

Because MHC is polymorphic we all draw different samples $^{\sc 20}$

Huge HLA polymorphism

From: HLA sequence database.

One host population with many pathogen species with MHC molecules and peptides that are both evolving (genetic algorithm).

- 1. Pathogens random, all hosts the same MHC molecule
- 2. Infection: every host interacts with every pathogen
- \rightarrow yields fitness of hosts and pathogens
- 3. Replace hosts & pathogens:
- \rightarrow fitness proportional selection
- \rightarrow fixed population size
- 4. Allow for mutation during reproduction $\mu_{path} \gg \mu_{hosts}$
- 5. Iterate, i.e., Goto 2.

Simulate MHC presentation by bitstring matching

• When a pathogen infects a host, check all peptides on all MHC alleles of the host.

MHC:	1010	0101010111	.00
peptide:	0110	1010101001	.10
match:	**	******	*

- Peptide is presented when longest adjacent match \geq 7 bits
- \rightarrow Probability that a peptide matches an MHC is 5%
- \rightarrow Each host samples a different subset

Borghans et al., Immunogenetics, 2004

 \rightarrow Much higher polymorphism with coevolution.

Polymorphism increases with host population size

Extinction diminished by increasing population size:

- \rightarrow many alleles in evolution scenarios
- \rightarrow few alleles with heterozygote advantage

Moore et al Science, 2002: HIV-1

Mutations in RT associated with HLA alleles: evidence for evolution to avoid detection

Population genetical model: explaining a high degree of polymorphism by heterozygote advantage requires that the fitness of the alleles is very similar.

To explain a polymorphism of 20 alleles the 20th allele should have fitness exceeding 95% of the harmonic mean fitness

This is not to say that there is no heterozygote advantage (HIV, Carrington) but only argues that one would not expect a high degree of polymorphism if heterozygote advantage were the only selection pressure.

Conclusions

- Host-pathogen coevolution accounts for MHC polymorphism
- 9-mers are sufficiently unique to classify their "source"
- Lymphocyte specificity related to self peptide diversity

Further questions

- Why is MHC not more diverse (Borghans, Eur. J. Immunol., 2003)?
- Is the non-polymorphic TAP or proteasome the Achilles heel of the polymorphic MHC peptide presentation (Yusim, Keşmir, ..., Korber, J. Virol., 2002)?

Collaborators

Peptide diversity:

- Can Keşmir (Utrecht University)
- Nigel Burroughs (University of Warwick)

MHC polymorphism:

- José Borghans (Sanquin, CLB, Amsterdam)
- Joost Beltman (ITB, Leiden)

Population Genetical model:

- José Borghans (Sanquin, CLB, Amsterdam)
- Can Keşmir (Utrecht University)
- Michiel van Boven (Wageningen University, Lelystad)
- Franjo Weissing (University of Groningen)

Lymphocytes are specific and recognize many peptides

Because there are many more peptides $(20^{10} \simeq 10^{13})$ than clones we need sufficient cross-reactivity (Mason.it98). But a peptide recognized by very few clones: $p \simeq 10^{-5}$

Strong selection in the thymus

- in mice 5% of the T cells produced in the thymus end up in mature repertoire.
- at least 50% of all positively selected T cells are negatively selected (Van Meerwijk.jem97).
- \rightarrow 90% of the thymocytes fail to become positively selected by any of the M MHC molecules in the mouse
- \rightarrow positive selection seems strongest bottleneck

Additional MHC molecules select largely non-overlapping repertoires

If positive selection is a strong bottleneck, the repertoire size should increase with the number of MHC molecules \rightarrow we need a quantitative model

Size of functional repertoire R

$$R = R_0((1-n)^M - (1-p)^M)$$
 with $n < p$

and M is the number of MHC molecules

Size of the functional repertoire

Solid: p = 0.01, q = p/2, dashed: p = 0.02, dotted: p = 0.005For best guess optimum at M = 140 MHC molecules