Modeling AIDS Clinical Trials and Antiviral Treatment Effects

Hulin Wu

University of Rochester School of Medicine and Dentistry Department of Biostatistics and Computational Biology

hwu@bst.rochester.edu

Outline

- Background and Objectives
- HIV Dynamic Models

Models for Drug Exposure and Response

Parameter Estimation and Model Fitting

- An AIDS Clinical Study
- **Summary and Discussion**

Modeling Our Knowledge

- Knowledge Sources for HIV/AIDS Treatments
- Established mechanisms and biological theories
- Prior information: published results and other studies
- New/Current information: data at hand

Modelers

Mathematicians:

- Use established mechanisms for modeling/simulations.
- Data from individual patients NOT efficiently used.

• Statisticians:

- analysis. Focus on current information/data for statistical
- The prior information/data and biological meachanisms/theories NOT efficiently used.

Bayes Statisticians:

- statistical inference. Use both current data and prior information for
- Biological meachanisms/theories NOT efficiently used.

How to Avoid the Problem?

sources to achieve our goals? How can we use the information from all different

Bridge the gap between mathematicians and statisticians

Our Objectives

- Develop mathematical models for the mechanisms of HIV infection and antiviral treatment effects
- PK/PD models
- Adherence models
- Drug susceptibility
- Develop statistical methods for parameter identification, model fitting and prediction
- differential equations Deal with the complexity of the models: Nonlinear
- Deal with the unidentifiability issues
- Deal with the intensive computations
- Apply the established models for AIDS clinical trial simulations and search for optimal treatment strategies

A Mechanisms-Based Model for HIV Infection

A viral dynamic model: describe the population dynamics of HIV and its target cells in plasma

$$\frac{\frac{d}{dt}T}{\frac{d}{dt}}T = \lambda - \rho T - [1 - \gamma(t)]kTV$$

$$\frac{\frac{d}{dt}T^*}{\frac{d}{dt}}V = [1 - \gamma(t)]kTV - \delta T^*$$

$$\frac{d}{dt}V = N\delta T^* - cV$$

- T, T^* , V: target uninfected cells, infected cells, virus
- $-\gamma(t)$: time-varying antiviral drug efficacy
- $(\lambda, \rho, k, \delta, N, C)$: unknown parameters to be estimated
- The equations (2): no closed-form solutions

Selection of Mechanisms-Based Models

- Consider your objectives/goals to select the model
- For prediction of clinical outcomes?

For understanding biological mechanisms?

- For studing a new treatment strategy?
- responses? For modeling immunological responses or virological
- For modeling drug effects?
- ??????

- Consider the trade-off between the model accuracy and model complexity
- Impossible to model everything in details
- Important components missing: not accurate
- Too many components included: too complex
- What information/data do you have?
 Do not use a model you cannot identify
- complex too) model Try to use all information to identify more accurate (more
- Try to use a simpler model if your goal can be achieved
- Sensitivity analysis: dealing with some uncertainty of the model

A Mechanisms-Based Model for HIV Infection

A viral dynamic model: describe the population dynamics of HIV and its target cells in plasma

$$\frac{\frac{d}{dt}T}{\frac{d}{dt}T} = \lambda - \rho T - [1 - \gamma(t)]kTV$$

$$\frac{d}{dt}T^* = [1 - \gamma(t)]kTV - \delta T^*$$

$$\frac{d}{dt}V = N\delta T^* - cV$$

(2)

 T, T^* , V: target uninfected cells, infected cells, virus

 $-\gamma(t)$: time-varying antiviral drug efficacy

- $(\lambda, \rho, k, \delta, N, C)$: unknown parameters to be estimated

The equations (2): no closed-form solutions

Antiviral Drug Efficacy Model

A modified E_{max} model for drug efficacy:

$$\gamma(t) = \frac{C(t)A(t)}{\phi IC_{50}(t) + C(t)A(t)} = \frac{IQ(t)A(t)}{\phi + IQ(t)A(t)}, \quad 0 \le \gamma(t) \le 1$$

(3)

- -C(t): the plasma drug concentration
- -A(t): drug adherence measurements
- IC_{50} : in vitro phenotype drug resistance marker
- ϕ : a conversion factor parameter
- $-IQ = rac{C(t)}{IC_{50}(t)}$: the Inhibitory Quotient (IQ)
- If $\gamma(t) = 1$, the drug: 100% effective
- If $\gamma(t) = 0$, the drug: no effect

Two or More Drug Regimens

$$\gamma(t) = \frac{[C_1(t)A_1(t)/IC_{50}^1(t)] + [C_2(t)A_2(t)/IC_{50}^2(t)]}{\phi + [C_1(t)A_1(t)/IC_{50}^1(t)] + [C_2(t)A_2(t)/IC_{50}^2(t)]}$$

$$= \frac{IQ_1(t)A_1(t) + IQ_2(t)A_2(t)}{\phi + IQ_1(t)A_1(t) + IQ_2(t)A_2(t)}$$
(5)

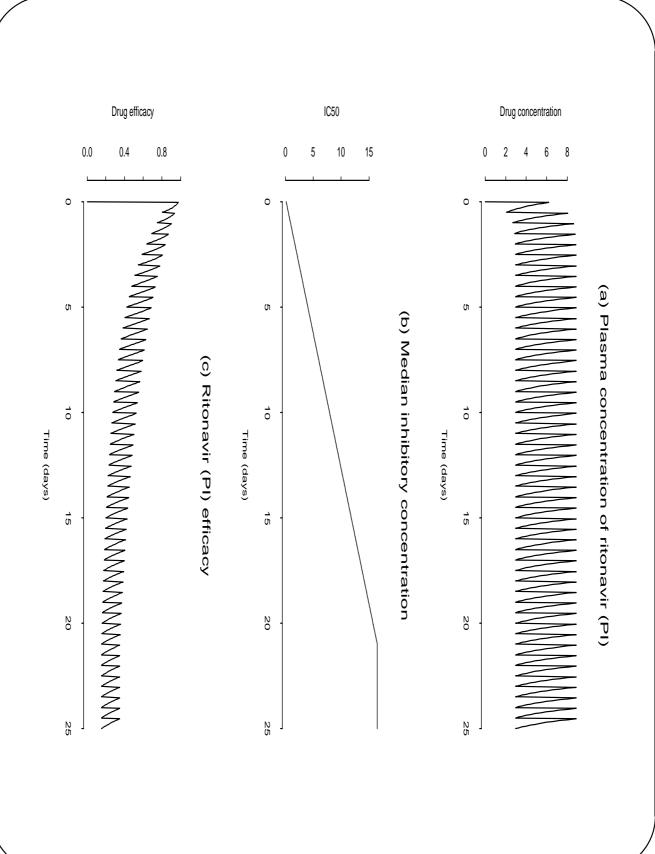
- $C_1(t)$ and $C_2(t)$: the plasma concentration for the two
- IC_{50}^1 and IC_{50}^2 : the median inhibitory concentration of the two agents.
- $A_1(t)$ and $A_2(t)$: the adherence rates of the two agents.

Drug Susceptibility Model

- agent-specific drug sensitivity Phenotype marker IC_{50} is used to quantify
- The function: to describe changes overtime in IC_{50}

$$IC_{50}(t) = \begin{cases} I_0 + \frac{I_r - I_0}{t_r} t & \text{for } 0 < t < t_r, \\ I_r & \text{for } t \ge t_r, \end{cases}$$
 (6)

- I_0 and I_r : respective values of $IC_{50}(t)$ at baseline and time point t_r at which drug resistant mutations appear
- If $I_r = I_0$, no resistance mutation developed during treatment



Properties of the HIV Dynamic Model

- exposure and drug sensitivity) and viral load Direct relationship between drug efficacy (drug
- A threshold of drug efficacy: $e_c = 1 \frac{c\rho}{kN\lambda}$
- if drug efficacy $\gamma(t) > e_c$, Model (2) converges to a stable uninfected steady-state
- * Virus will be eventually eradicated in theory
- if $\gamma(t) < e_c$, the uninfected state is not stable and the endemically infected state exists
- * Viral load may rebound
- The threshold e_c : may reflect the immune status of patients

A Challenging Problem

How to Estimate the Unknown Parameters in the Dynamic Model?

- Difficulties:
- Identifiability problem: Too many parameters, $(\phi, \lambda, \rho, k, \delta, N, C)$
- Data from individuals: sparse
- Different response patterns for different patients
- solutions Nonlinear differential equations model: no closed-form

Bayesian Hierarchical Model Approach

- Propose a three-stage hierarchical (mixed-effects) model
- Advantages of Bayesian hierarchical modeling approach
- Naturally incorporate prior information
- Deal with extremely complicated models such as nonlinear differential equation models
- questions Use posterior distributions to easily answer inference
- Estimate parameters for both population and individuals

Bayesian Modeling

A three-stage Bayesian hierarchical model

Stage 1. Within-subject variation:

$$\mathbf{y}_i = \mathbf{f}_i(oldsymbol{ heta}_i) + \mathbf{e}_i, \quad \left[\mathbf{e}_i | \sigma^2, oldsymbol{ heta}_i
ight] \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_{m_i})$$

 $\mathbf{f}_i(\boldsymbol{\theta}_i) = (f_{i1}(\boldsymbol{\theta}_i, t_1), \cdots, f_{im_i}(\boldsymbol{\theta}_i, t_{m_i}))^T$: ODE solutions. $\mathbf{y}_i = (y_{i1}(t_1), \cdots, y_{im_i}(t_{m_i}))^T$: Data from Subject i $\mathbf{e}_i = (e_i(t_1), \cdots, e_i(t_{m_i}))^T$: Measurement error

Stage 2. Between-subject variation:

$$oldsymbol{ heta}_i = oldsymbol{\mu} + \mathbf{b}_i, \quad ext{ } [\mathbf{b}_i | \mathbf{\Sigma}] \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

Stage 3. Hyperprior distributions:

$$\sigma^{-2} \sim Ga(a,b), \quad \mu \sim \mathcal{N}(\eta, \Lambda), \quad \Sigma^{-1} \sim Wi(\Omega, \nu)$$

- Gamma (Ga), Normal (\mathcal{N}) and Wishart (Wi): independent distributions
- Hyper-parameters $a, b, \eta, \Lambda, \Omega$ and ν : known

Bayesian Estimation: Implementation

- Choose prior distributions
- Informative prior and non-informative prior
- distributions for parameters of interest Rule of thumb: choose non-informative prior
- Implement MCMC algorithm
- distributions for σ^{-2} , μ , Σ^{-1} Gibbs sampling step: closed form of conditional
- distributions for θ_i Metropolis-Hastings step: no closed form of conditional
- "burn-in", every fifth simulation samples Run a long chain: the number of iterations, initial
- Obtain posterior distributions (posterior means or credible intervals) based on the final MCMC samples

A Clinical Study: A5055

- PI-containing therapies. A study of HIV-1 infected patients failing
- Two salvage regimens:
- **NRTIs** Arm A: IDV 800 mg q12h+RTV 200mg q12h+two
- Arm B: IDV 400 mg q12h+RTV 400mg q12h+two **NRTIs**
- Plasma HIV-1 RNA (viral load) measured at days 0, 7, 14, 28, 56, 84, 112, 140 and 168 of follow-up

Clinical Data –Results of population parameters

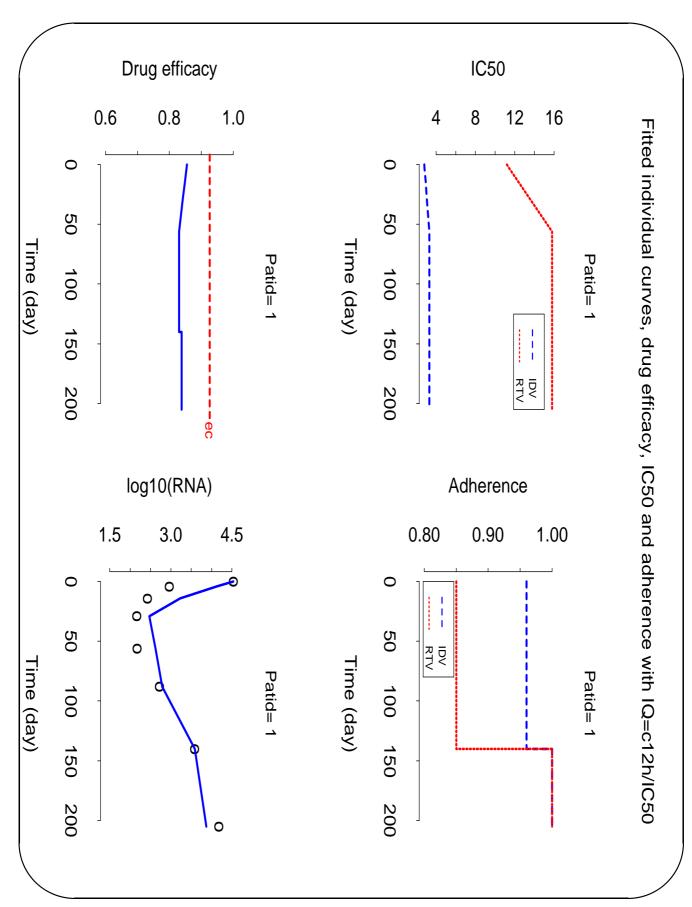
$(8.632 \times 10^{-6}, 9.774 \times 10^{-6})$	0.290×10^{-6}	9.183×10^{-6}	k
(912.074,1106.654)	49.795	1004.988	N
(0.0905,0.1099)	0.0049	0.0997	ρ
(91.497,110.830)	4.9431	100.645	ン
(0.3387,0.4105)	0.0184	0.3729	δ
(2.7139,3.2881)	0.1466	2.9867	c
$(1.2143,\ 3.6392)$	0.6354	2.1091	φ
95% C I	SD	PM	Parameter

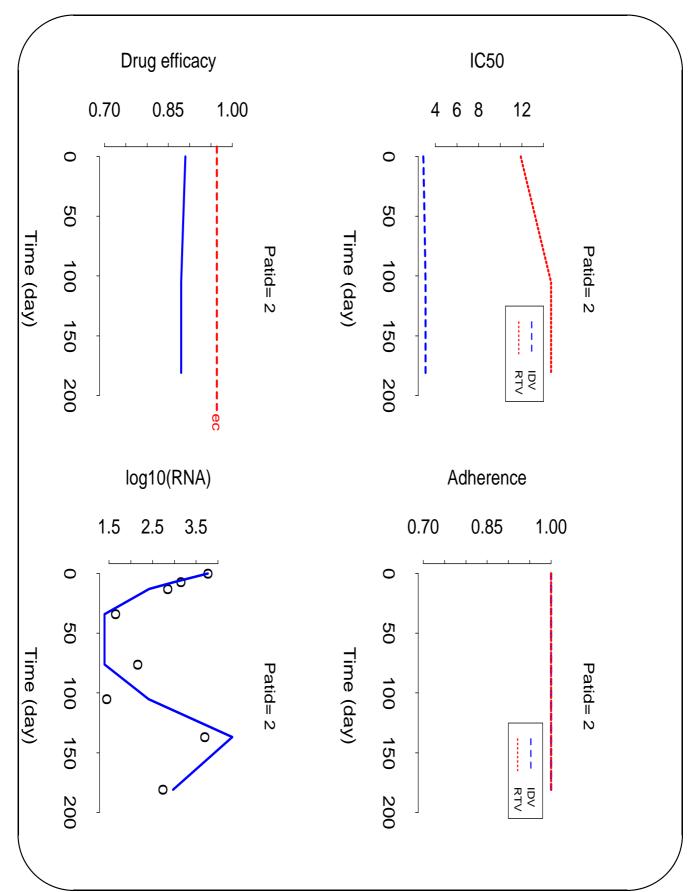
- Posterior mean for the population parameter ϕ is 2.1091 with a SD of 0.6354 and the 95% CI of (1.2143, 3.6392)
- our estimate shows that there is about 2-fold difference between invitro IC_{50} and in vivo IC_{50} As ϕ plays a role of transforming the *in vitro* IC_{50} into *in vivo* IC_{50} ,

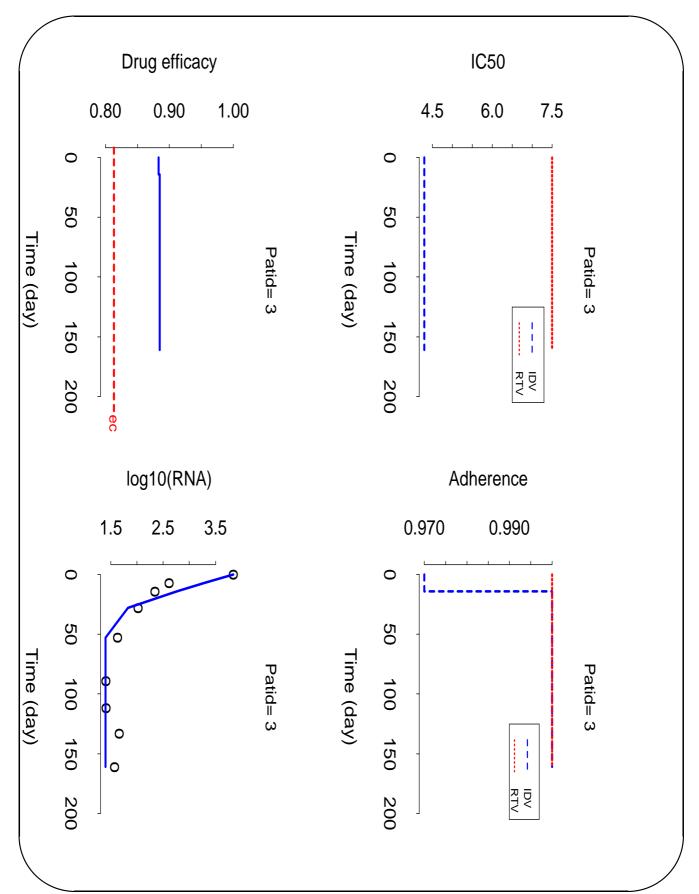
Clinical Data–Results of individual parameters

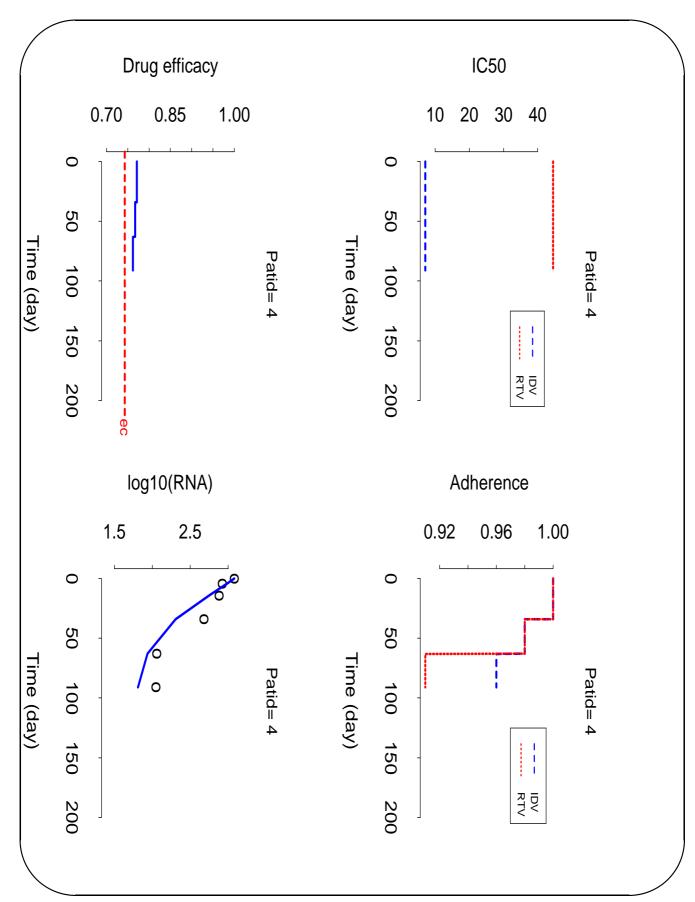
0.24	8.37×10^{-6}	4530.531	0.416	32.722	0.663	2.280	8.484	∞
0.98	18.54×10^{-6}	30.559	0.003	4015.398	0.299	7.008	0.091	7
0.89	11.18×10^{-6}	247.416	0.025	375.882	0.183	4.633	0.786	6
0.64	6.54×10^{-6}	2735.239	0.201	71.295	0.663	2.306	7.066	Сī
0.34	9.09×10^{-6}	3051.988	0.313	44.956	0.798	2.761	4.960	4
0.37	8.66×10^{-6}	3258.347	0.289	36.877	0.456	2.283	3.723	သ
0.17	10.84×10^{-6}	4795.813	0.426	29.619	1.183	2.969	5.371	2
0.97	8.33×10^{-6}	456.757	0.024	410.462	0.270	2.254	0.447	Н
e	k_i	N_i	$ ho_{i}$	λ_i	δ_i	c_i	ϕ_i	Patient

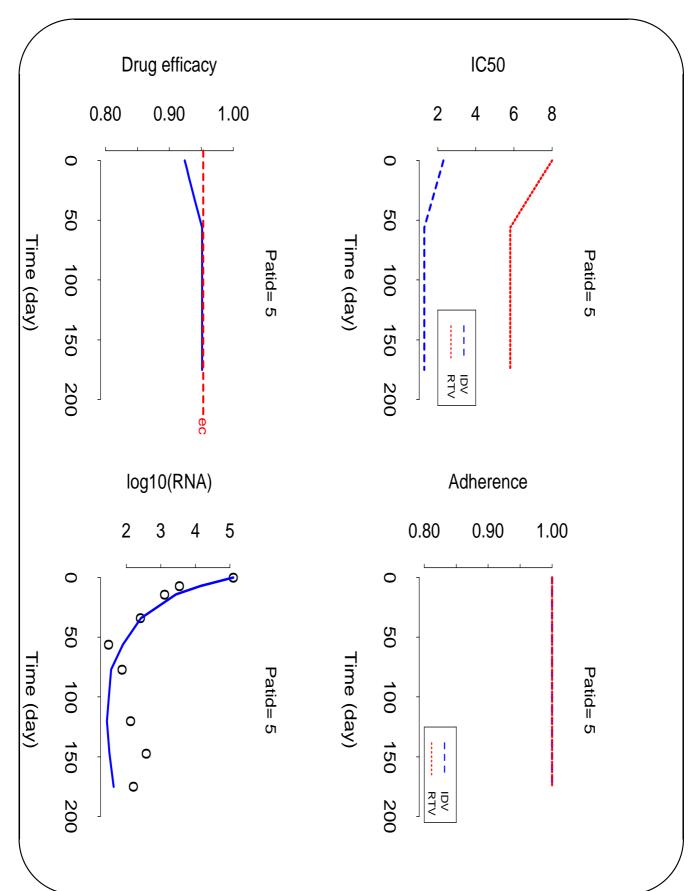
- inter-subject variation The individual-specific parameter estimates suggest a large
- The model provides a good fit to the clinical data

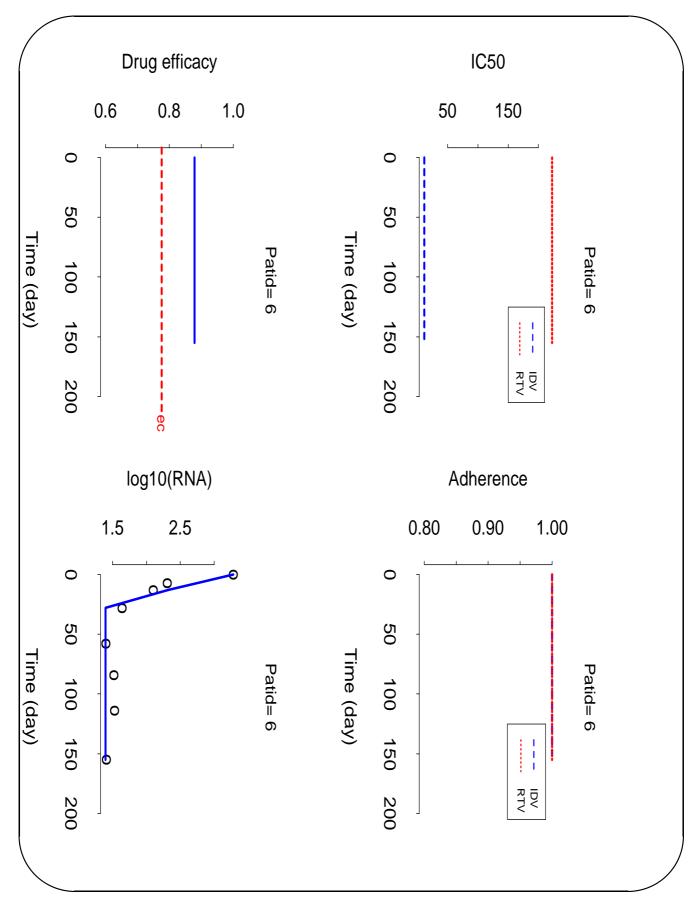












Questions

- Model fitting looks good using the information:
- PK: Trough-level drug concentration
- Drug susceptibility: IC50
- Adherence: Questionaire data

Questions

model?

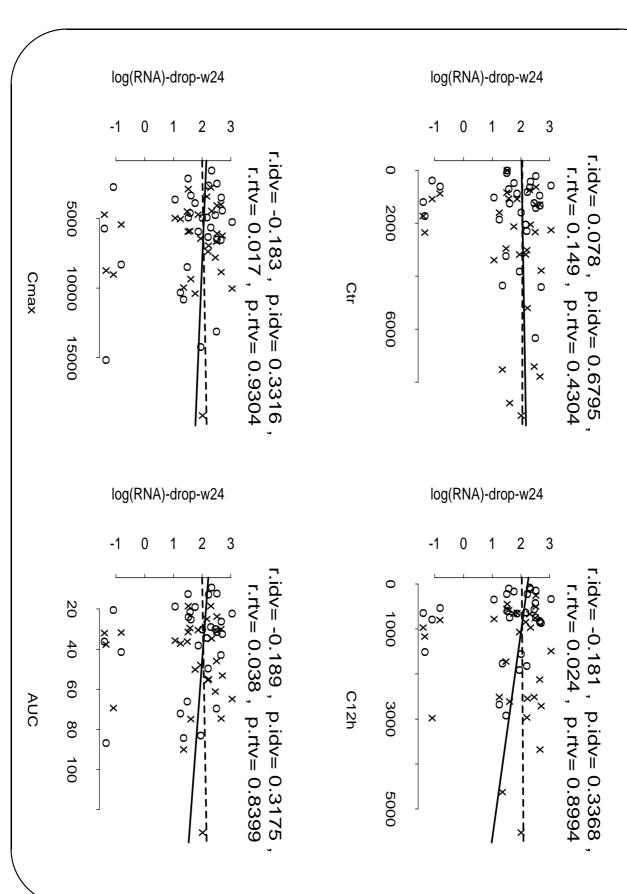
Do all these factors contribute to good fitting of the

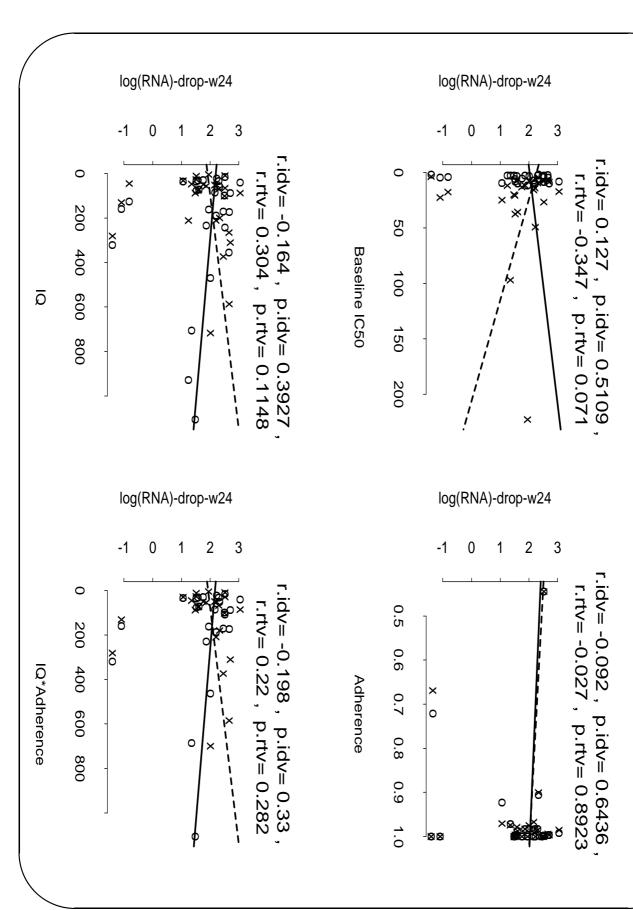
- If not all, what are important factors?
- response by simple regression analysis? can we still see the effect of these factors on the Without using the complicated viral dynamic model,

Simple Regression or Correlation Analyses

- Diffculty: How to define the "response"?
- Viral load changes from baseline to week 4/week 24
- Simple regression or correlation: No effects

Figure 1: Simple Regression or Correlation Analyses





Mechanisms-Based Model Fitting

susceptibility Three Factors: (1) PK, (2) adherence and (3) drug

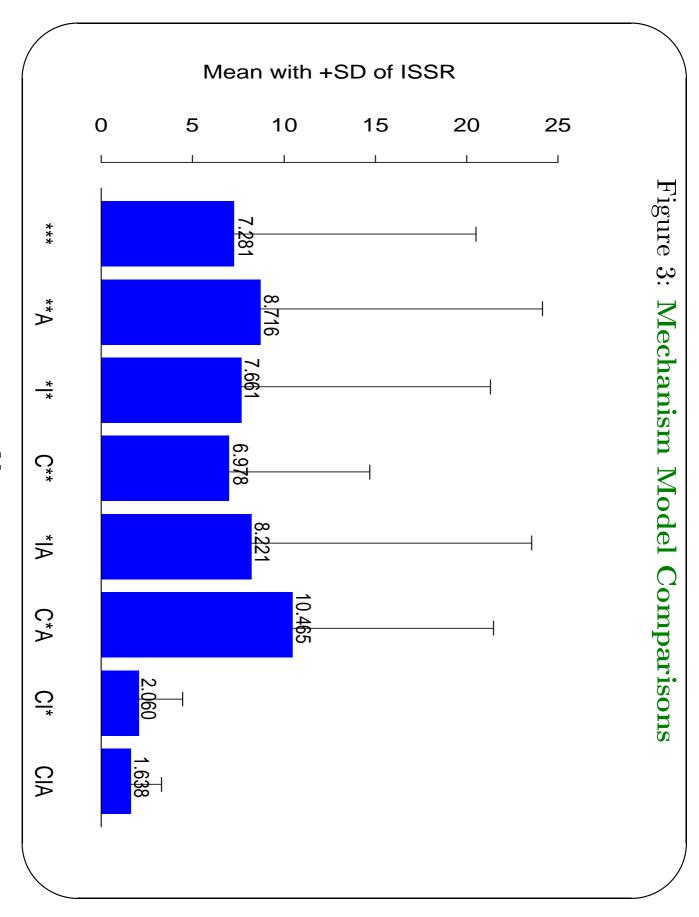
- No factor considered
- Considering each of the three factors separately
- Considering all pairs of two-factor combinations
- Considering all three factors together

Mechanisms-Based Model Fitting

- Fit the data from all patients (Bayesian model)

Get sum of squared residuals (SSR) from each patient

- model fittings Use the SSR from all inidividuals (ISSR) to compare
- The smallest ISSR is the best model



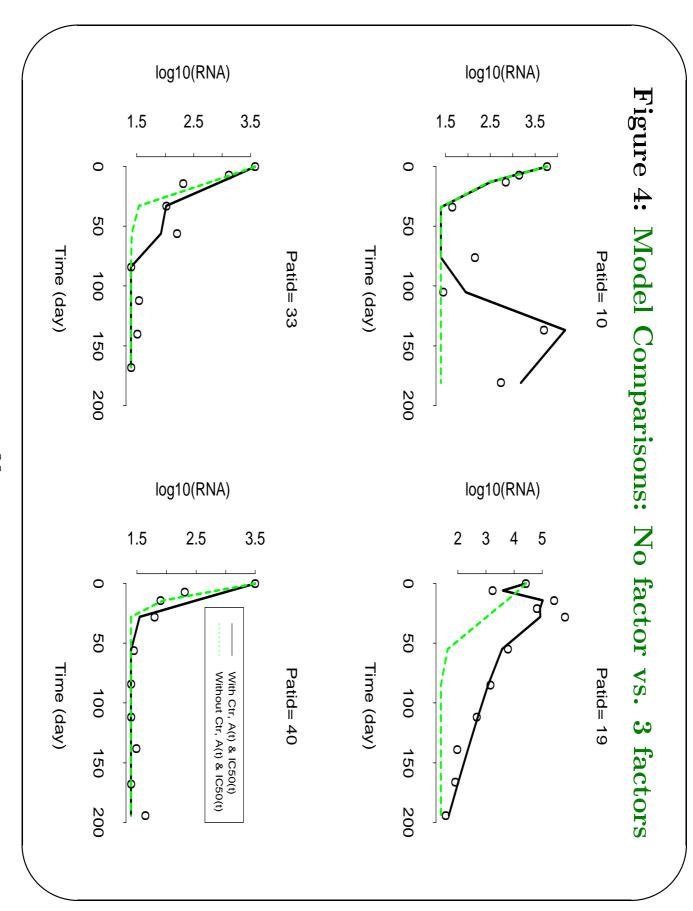
Mechanism Model Comparisons: p-values

			P				
CIA	CI*	C*A	*IA	() *	*I*	* *	
0.0055	0.0136	0.0641	1.0000	0.7576	1.0000	0.1001	* * *
0.0001	<0.0001	1.0000	0.0079	0.3545	0.0136		**A
0.031	0.019	0.12	0.086	0.758			*[*
0.0002	0.0136	0.0641	0.7576				C**
0.014	0.042	0.014					*IA
< 0.0001	0.0007						C*A
0.22							CI*

C: Drug Concetration (PK)

I: Drug susceptibility (IC50)

A: Adherence



Conclusions

- C-PK, I-IC50, A-Adherence
- PK and Drug susceptibility: Important
- IA significantly better than A
- I significantly better than A
- CI: almost better than all others
- Adherence: No effect
- CIA not significantly better than CI
- IA's SSR larger than I
- CA's SSR larger than C
- A's SSR larger than that with no factor considered Data quality problem? More noise or more signal?
- independet IA significantly better than CA: I and A more

Summary

antiviral treatment with the following factors Developed HIV Dynamic models by considering long-term

- Drug efficacy
- Drug concentration
- Drug susceptibility
- Adherence

Summary

relationship between the above factors and response HIV Dynamic models: Powerful to show a significant

- Simple regression or correlation methods: failed to detect the effect
- Dynamic modeling method: more powerful because
- More information used: biological mechanism theories, prior information and current data
- The whole viral load trajectory used as the response
- Complicated nonlinear relationship between the drug factors and antiviral response captured appropriately
- captured appropriately Complicated nonlinear interactions among the factors

Discussion and Open Problems

- Data-Driven Parametric Models
- A model is selected after looking at the data
- A linear or nonlinear functions available to fit the data
- Good for predictions and interpretations
- Data-Driven Nonparametric Models
- More flexible to fit complicated data patterns and robust against model assumptions
- Not good for predictions and interpretations

Discussion and Open Problems

Mechanisms-Based Parametric Models

- Advantages:
- The model can be determined before data collection
- Biomedical mechanisms or physical laws: efficiently used
- Great for predictions and interpretations

Drawbacks:

- Not robust to model assumptions
- Well established biological theories and their mathematical representations required

More Work Needed:

- More statistical research needed for model identification
- simulations and search for optimal treatment strategies Apply the established models for AIDS clinical trial

Acknowledgments

- Dr. Yangxin Huang, U of R
- Drs. John G. Gerber and Edward P. Acosta: A5055 Co-Chairs
- A5055 Team Members
- ACTG DACS 210 Team Members